特高拱坝运行初期变形预测模型温度因子选取方法

胡江, 王春红, 马福恒

raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (1) : 59-65.

PDF(2417 KB)
PDF(2417 KB)
raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (1) : 59-65. DOI: 10.11988/ckyyb.20191153
工程安全与灾害防治

特高拱坝运行初期变形预测模型温度因子选取方法

  • 胡江1, 王春红2, 马福恒1
作者信息 +

Selecting Temperature Factor for Deformation Prediction Model for Super-high Arch Dams During Initial Operation

  • HU Jiang1, WANG Chun-hong2, MA Fu-heng1
Author information +
文章历史 +

摘要

特高拱坝运行初期坝前库水温垂直分层逐步形成,坝体混凝土持续水化内部温度回升。传统变形预测模型采用的周期项温度因子不能很好地描述运行初期环境和坝体内部温度的非线性非稳定性特征。对此,融合主成分分析和分层聚类方法,提出了基于主成分分层聚类法的运行初期实测环境和坝体温度因子分类分区及典型测点的选取方法;同时,引入了可反映周期性库水位变化下运行初期谷幅收缩变形特征的指数和周期项的组合时效因子;在此基础上,构建了基于实测温度因子的多元回归模型和支持向量机模型。实例分析表明,选取的实测温度因子能较好地反映运行初期坝体温度的时空变化特征,以此构建的模型比传统模型具有更高的预测精度。

Abstract

The water temperature in front of super-high arch dam gradually stratifies vertically in the initial operation period, resulting in the rebound of internal temperature of the dam concrete. Periodic terms of temperature effect used in conventional deformation prediction models could not well describe the nonlinearity and nonstationarity of environmental and internal temperatures of dam during its initial operation. In view of this, a method of classifying measured ambient and dam temperatures and selecting typical measurement points is presented by integrating principal component analysis and hierarchical clustering. Meanwhile,a combination of time varying effects, including both index term and cycle term,that reflects the valley deformation under the periodic fluctuation of reservoir water level during the initial operation is introduced. On this basis,a multivariate regression model and a support vector machine model based on measured temperature variable are constructed. Case study demonstrates that the selected measured temperature variable well reflects the spatio-temporal characteristics of dam temperature field during initial operation, and the corresponding constructed model is of higher prediction accuracy than traditional models.

关键词

特高拱坝 / 运行初期 / 变形 / 温度因子 / 预测模型 / 主成分分析 / 分层聚类法 / 支持向量机

Key words

super-high arch dam / initial operation period / deformation / temperature factor / prediction model / principal component analysis / clustering / support vector machine

引用本文

导出引用
胡江, 王春红, 马福恒. 特高拱坝运行初期变形预测模型温度因子选取方法[J]. raybet体育在线 院报. 2021, 38(1): 59-65 https://doi.org/10.11988/ckyyb.20191153
HU Jiang, WANG Chun-hong, MA Fu-heng. Selecting Temperature Factor for Deformation Prediction Model for Super-high Arch Dams During Initial Operation[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(1): 59-65 https://doi.org/10.11988/ckyyb.20191153
中图分类号: TV642   

参考文献

[1]WANG Ren-kun. Key Technologies in the Design and Construction of 300 m Ultra-high Arch Dams[J]. Engineering, 2016, 2(3):350-359.
[2] 相建方. 边界条件对高拱坝真实工作性态的影响研究[D]. 北京:中国水利水电科学研究院, 2017.[3] 张国新, 陈培培, 周秋景. 特高拱坝真实温度荷载及对大坝工作性态的影响[J]. 水利学报, 2014, 45(2):127-134.
[4] 张 冲, 王仁坤, 汤雪娟. 溪洛渡特高拱坝蓄水初期工作状态评价[J]. 水利学报, 2016, 47(1):85-93.
[5] 魏 浪, 安瑞冬, 常 理, 等. 水库坝前水温结构日变化规律研究[J]. 四川大学学报(工程科学版), 2016, 48(4):25-3.
[6] 谢奇珂, 陈永灿, 刘昭伟, 等. 溪洛渡水库蓄水初期水温模拟[J]. 环境影响评价, 2016(3):39-44.
[7] 龙良红, 徐 慧, 鲍正风, 等. 溪洛渡水库水温时空特性研究[J]. 水力发电学报, 2018, 37(4):79-89.
[8] LIANG G, HU Y, LI Q. Safety Monitoring of High Arch Dams in Initial Operation Period Using Vector Error Correction Model[J]. Rock Mechanics and Rock Engineering, 2018, 51(8):2469-2481.
[9] HU Jiang, WU Su-hua. Statistical Modeling for Deformation Analysis of Concrete Arch Dams with Influential Horizontal Cracks[J]. Structural Health Monitoring, 2019, 18(2):546-562.
[10]MATA J, CASTRO A T, COSTA J S. Constructing Statistical Models for Arch Dam Deformation[J]. Structural Control & Health Monitoring, 2014, 21(3):423-437.
[11]钱秋培, 崔伟杰, 包腾飞, 等. 基于SVM的混凝土坝变形监控模型预测能力实例分析[J]. raybet体育在线 院报, 2018, 35(8):50-54.
[12]牛广利, 李端有, 李天旸, 等. 基于云平台的大坝安全监测数据管理及分析系统研发与应用[J]. raybet体育在线 院报, 2019, 36(6):161-165.
[13]HU Jiang, MA Fu-heng. Zoned Safety Monitoring Model for Uplift Pressures of Concrete Dams[J]. Transactions of the Institute of Measurement and Control, 2019, 41(14): 3952-3969.
[14]ABDI H,WILLIAMS LJ.Principal Component Analysis[J].WIREs Computational Statistics,2010,2(4):433-459.
[15]JOLLIFFE I T, CADIMA J. Principal Component Analysis: A Review and Recent Developments[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2065): 20150202.
[16]MURTAGH F, LEGENDRE P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? [J]. Journal of Classification, 2014, 31(3): 274-295.
[17]JUNG Y, PARK H, DU D Z, et al. A Decision Criterion for the Optimal Number of Clusters in Hierarchical Clustering[J]. Journal of Global Optimization, 2003, 25(1): 91-111.
[18]顾冲时, 吴中如. 大坝与坝基安全监控理论和方法及其应用[M]. 南京:河海大学出版社, 2006.
[19]SALAZAR F,TOLEDO M A,ONATE E,et al. An Empirical Comparison of Machine Learning Techniques for Dam Behaviour Modelling[J].Structural Safety,2015,56:9-17.

基金

国家重点研发计划项目(2018YFC0406705);国家自然科学基金面上项目(51879169,51779155)

PDF(2417 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map