由局部超挖引发基坑大范围破坏的工程事故时有发生,但局部超挖对基坑整体安全性能的影响及其引发连续破坏的机理尚仍缺乏研究。以悬臂排桩支护的长条形基坑为例,采用模型试验和有限差分法对基坑局部超挖引起的荷载传递规律进行探索。结果表明:随着超挖深度的增大,由于土拱效应,超挖区外支护桩内力大幅增长,而超挖区内支护桩桩身弯矩先增加后降低或持续降低;大面积开挖深度相同时,随着局部超挖范围增大,邻近支护桩桩身弯矩与位移增幅逐渐增大并趋于稳定。研究成果初步揭示了局部超挖对支护桩内力的影响等荷载传递规律,可为防超挖引发基坑连续破坏研究和局部深坑设计提供参考。
Abstract
Although collapse cases caused by partial over-excavation are seen frequently, studies on the overall safety performance and the progressive collapse mechanism caused by partial over-excavation are still in lack. In this study, the load transfer mechanism of cantilever contiguous retaining piles of long strip excavation subjected to partial over-excavation were investigated by finite difference method and model test. Results revealed that with the increase of over-excavation depth, the internal force of the piles beyond over-excavation zone increased by a large margin due to soil arch effect, while the bending moment of piles within over-excavation zone increased first and then decreased or continued to decrease. When the excavation depth in a large area remained the same, the increments in bending moment and displacement of adjacent piles intensified gradually and tended to be stable along with the widening of partial over-excavation range. The research results reveal the load transfer rules reflecting the influence of partial over-excavation on internal force of piles.
关键词
基坑事故 /
悬臂排桩 /
局部超挖 /
有限差分法 /
桩身弯矩
Key words
excavation collapse /
cantilever contiguous piles /
partial over-excavation /
finite difference method /
bending moment of piles
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张 瑾. 基于实测数据的深基坑施工安全评估研究[D]. 上海:同济大学, 2008.
[2] CHEN R P, LI Z C, CHEN Y M, et al. Failure Investigation at a Collapsed Deep Excavation in Very Sensitive Organic Soft Clay[J]. Journal of Performance of Constructed Facilities, 2013, 29(3): 04014078. doi: 10.1061/(ASCE)CF.1943-5509.0000557.
[3] 孙海忠. 关于上海某基坑坍塌事故的分析研究[J]. 地下空间与工程学报,2012,8(增刊): 1743-1746.
[4] 周 勇, 郭 楠, 杨校辉, 等. 某桩锚支护深基坑超挖变形分析与加固处理[J]. 地下空间与工程学报, 2015,11(增刊1): 211-216.
[5] 龚晓南. 关于基坑工程的几点思考[J]. 土木工程学报, 2005, 38(9): 99-102.
[6] 吴铭炳, 林大丰, 戴一鸣, 等. 坑中坑基坑支护设计与监测[J]. 岩土工程学报, 2006,28(增刊): 1570-1572.
[7] 李忠超,陈仁朋,陈云敏,等.软黏土中某内支撑式深基坑稳定性安全系数分析[J]. 岩土工程学报,2015,37(5): 769-775.
[8] 惠 冰. 某桩锚支护深基坑失稳破坏过程分析与加固处理[J]. 施工技术,2015,44(增刊): 112-116.
[9] TAN Y, WEI B. Observed Behaviors of a Long and Deep Excavation Constructed by Cut-and-Cover Technique in Shanghai Soft Clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 138(1): 69-88.
[10]谢秀栋,刘国彬. 深基坑施工围护结构变形的时间特性研究[J]. 地下空间与工程学报, 2012,8(6): 1261-1266.
[11]黄广龙, 张 枫, 卫 敏, 等. 某软土深基坑险情分析与处理[J]. 岩土力学,2009,30(6): 1735-1740.
[12]胡 辉,汤连生,林兴立,等.外坑支护结构转动时坑间被动区土拱效应分析[J]. raybet体育在线
院报,2015,32(4): 101-108.
[13]汤 瑞,王 强,过 令,等.不同超挖厚度对围护结构及周边环境的影响[J].raybet体育在线
院报,2016,33(4):105-110.
[14]江 杰,胡 何,冯 野,等.坑中坑土体加固对悬臂式支护结构的影响分析[J].raybet体育在线
院报,2017,34(3): 58-62,66.
[15]孙剑平,魏焕卫,江宗宝, 等. 影响复合土钉墙的变形因素的实测分析[J].岩土工程学报,2010,32(增刊1): 430-434.
[16]郑 刚, 程雪松, 张 雁. 基坑环梁支撑结构的连续破坏模拟及冗余度研究[J]. 岩土工程学报, 2014, 36(1): 105-117.
[17]郑 刚, 程雪松, 刁 钰. 基坑垮塌的离散元模拟及冗余度分析[J]. 岩土力学, 2014, 35(2): 573-583.
[18]CHENG X S, ZHENG G, DIAO Y, et al. Study of the Progressive Collapse Mechanism of Excavations Retained by Cantilever Contiguous Piles[J]. Engineering Failure Analysis, 2017, 71(2): 72-89.
[19]程雪松,郑 刚,黄天明, 等. 悬臂排桩支护基坑沿长度方向连续破坏的机理试验研究[J]. 岩土工程学报,2016, 38(9): 1640-1649.
[20] CHENG X S, ZHENG G, DIAO Y, et al. Experimental Study of the Progressive Collapse Mechanism of Excavations Retained by Cantilever Piles[J]. Canadian Geotechnical Journal, 2017, 54(4): 574-587.
[21]郑 刚,雷亚伟,程雪松,等. 局部破坏对钢支撑排桩基坑支护体系影响的试验研究[J].2019, 岩土工程学报, 2019,41(8):1390-1399.
[22]GB 50007—2011,建筑地基基础设计规范[S]. 北京: 中国建筑工业出版社,2011.
[23]JGJ 120—2012,建筑基坑支护技术规程[S]. 北京: 中国建筑工业出版社,2012.
[24] TERZAGHI K. Theoretical Soil Mechanics[M]. New York: Wiley, 1943.
[25]BOSSCHER P J, GRAY D H. Soil Arching in Sandy Slopes[J]. Journal of Geotechnical Engineering, 1986, 112(6): 626-645.
[26]ZHENG G, CHENG X S, DIAO Y, et al. Concept and Design Methodology of Redundancy in Braced Excavation and Case Histories[J]. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 2011, 42(3): 13-21.
基金
国家重点研发计划项目(2016YFC0802008);天津市自然科学基金项目(18JCQNJC07900)