岷江作为长江上游重要支流,为川西和成都平原社会经济发展提供了重要支撑。相较于长江其他主要支流,岷江流域整体水电开发时间略晚。近年来,岷江流域水库建设工程不断增多,流域水沙情况开始变化。根据实测资料,运用水沙过程线法和径流量-输沙量双累计曲线法,初步分析岷江水库建设特点、水沙输移变化,以及二者之间的联系。结果表明:水库数量和总库容分别在1970年和2005年后有了较大的提升,水库建设的趋势是由干流深入到支流,虽然近年水库建设数量减少,但高坝大库逐渐增多;随着建坝技术水平的提高,逐渐由易建造的土坝变为筑坝难度高的其它坝型;由于水库调控能力、拦沙作用的增强,流域主汛期径流量、输沙量出现坦化现象,年径流量和年输沙量在1990年后均有减小趋势,且年输沙量减少的趋势更明显。近期高场站年输沙量变化与岷江水库建设有着一定的负相关关系,随着岷江流域水库总库容的进一步增大,这种相关关系增强,且在汛期体现得更为明显。
Abstract
As an important tributary of the upper Yangtze River, Minjiang River provides a pivotal support for the social economic development in western Sichuan and Chengdu plain. The overall hydropower development in the Minjiang River basin took place slightly later than that in other major tributaries of the Yangtze River. In recent years, reservoir construction project increases unceasingly in the Minjiang River basin, giving rise to variations in the water and sediment condition. In this paper, the characteristics of reservoir construction and water-sediment transport as well as their interrelations are preliminary examined according to flow-sediment process lines and accumulative runoff-sediment load curves based on measured data. Results demonstrated that the number of reservoirs and the total storage capacity have surged since 1970 and 2005, respectively. Reservoirs are constructed from the mainstream to tributaries, with the number of reservoirs under construction declining while high dams and large reservoirs increasing. As dam construction technology improves, earth dam which is easy to construct is gradually changed into other dam types with high difficulty. Moreover, due to the enhancement of reservoirs’ regulation ability and sediment holding function, the runoff and sediment transport in main flood season of the basin have been flattening. Annual runoff and annual sediment transport both saw a downward trend after 1990, of which the annual sediment transport has been decreasing more obviously. Recently, the change of annual sediment transport volume at Gaochang station is in a negative correlation with reservoir construction. Such correlation intensifies with the further increase in the total capacity of reservoir in Minjiang River basin, and is more evident in flood season.
关键词
水沙输移 /
输沙量 /
径流量 /
双累计曲线法 /
岷江流域 /
水库建设 /
高场站
Key words
water and sediment transport /
sediment discharge /
volume of runoff /
accumulative runoff-sediment load curves method /
Minjiang river basin /
reservoir construction /
Gaochang station
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 许全喜,石国钰,陈泽方.长江上游近期水沙变化特点及其趋势分析[J].水科学进展,2004,15(4):420-426.
[2] 刘 茜,王延贵.江河水沙变化突变性与周期性分析方法及比较[J].水利水电科技进展,2015,35(2):17-23.
[3] 彭 涛, 田 慧, 秦振雄, 等. 气候变化和人类活动对长江径流泥沙的影响研究[J]. 泥沙研究, 2018,43(6):54-60.
[4] 应 铭, 李九发, 万新宁, 等. 长江大通站输沙量时间序列分析研究[J]. 长江流域资源与环境, 2005,14(1):83-87.
[5] 黄 峰, 夏自强, 王远坤. 长江上游枯水期及10月径流情势分析[J]. 河海大学学报(自然科学版), 2010,38(2):129-133.
[6] 郭海晋, 陈 玺. 长江上游径流持续偏枯地区贡献度及成因研究[J]. 水资源研究, 2017,6(4):309-316.
[7] 代 稳, 吕殿青, 李景保, 等. 气候变化和人类活动对长江中游径流量变化影响分析[J]. 冰川冻土, 2016,38(2):488-497.
[8] 秦鹏程,刘 敏,杜良敏,等.气候变化对长江上游径流影响预估[J].气候变化研究进展,2019,15(4):1-14.
[9] 张信宝, 文安邦. 长江上游干流和支流河流泥沙近期变化及其原因[J]. 水利学报, 2002(4):56-59.
[10]段炎冲, 李丹勋, 王兴奎. 长江上游梯级水库群拦沙效果分析[J]. 四川大学学报(工程科学版), 2015,47(6):15-23.
[11]胡春宏, 王延贵, 张燕菁, 等. 中国江河水沙变化趋势与主要影响因素[J]. 水科学进展, 2010,21(4):524-532.
[12]郭 卫, 徐高洪, 沈 杰, 等. 岷江流域径流变化趋势及水文情势变异研究[J]. 人民长江, 2018,49(22):64-68.
[13]陈泽方, 许全喜. 岷江流域水沙变化特性分析[J]. 人民长江, 2006,37(12):65-67.
[14]王延贵, 胡春宏, 刘 茜, 等. 长江上游水沙特性变化与人类活动的影响[J]. 泥沙研究, 2016(1):1-8.
[15]李海彬, 张小峰, 胡春宏, 等. 三峡入库沙量变化趋势及上游建库影响[J]. 水力发电学报, 2011,30(1):94-100.
[16]杜华明. 岷江流域径流演变及其对气候变化的响应[J]. 宜宾学院学报, 2014,14(12):36-40.
[17]王延贵, 史红玲, 刘 茜. 水库拦沙对长江水沙态势变化的影响[J]. 水科学进展, 2014,25(4):467-476.
[18]穆兴民, 张秀勤, 高 鹏, 等. 双累积曲线方法理论及在水文气象领域应用中应注意的问题[J]. 水文, 2010,30(4):47-51.
[19]翟红娟, 王 培. 岷江流域水资源开发与生态环境保护[J]. 环境保护, 2018,46(9):22-26.
[20]LIU L,DU J.Documented Changes in Annual Runoff and Attribution Since the 1950s within Selected Rivers in China[J].Advances in Climate Change Research,2017,8(1):37-47.
[21]ZHANG Y,ZHONG P,WANG M,et al.Changes Identification of the Three Gorges Reservoir Inflow and the Driving Factors Quantification[J].Quaternary International,2018,475:28-41.
[22]夏 军, 王渺林. 长江上游流域径流变化与分布式水文模拟[J]. 资源科学, 2008,30(7):962-967.
[23]武旭同, 李 娜, 王腊春. 近60年来长江干流水沙特征分析[J]. 泥沙研究, 2016(5):40-46.
[24]许炯心, 孙 季. 长江上游干支流悬移质含沙量的变化及其原因[J]. 地理研究, 2008,27(2):332-342.
[25]陈 进,黄 薇.长江的生态流量问题[J].raybet体育在线
院报,2007,24(6):1-5.
[26]黄永绥. 岷江上游水电规划的启示:岷江上游水电规划总结[J]. 水电站设计, 2007,23(2):35-39.
[27]ZHAO Y, ZOU X, LIU Q, et al. Assessing Natural and Anthropogenic Influences on Water Discharge and Sediment Load in the Yangtze River, China[J]. Science of the Total Environment, 2017,607/608:920-932.
[28]李龙成,陈光兰,岑 静,等. 长江上游岷江流域水沙变化特征分析[J]. 人民长江,2008,39(20):42-44.
[29]郭 乐, 鲍正风. 长江三峡水库建库以来来水变化及原因分析[J]. 水电与新能源, 2016(5):34-36.
[30]许炯心. 长江上游干支流近期水沙变化及其与水库修建的关系[J]. 山地学报, 2009,27(4):385-393.
[31]师长兴, 杜 俊. 长江上游输沙量阶段性变化和原因分析[J]. 泥沙研究, 2009(4):17-24.
基金
国家重点研发计划项目(2016YFC0402302);国家自然科学基金项目(51779015, 51809013)