以西安地铁5号线暗挖隧道为工程背景,采用降水加固与注浆加固2种地层加固措施,建立渗流-应力耦合数值计算模型,对富水黄土隧道地表沉降、洞周土体变形及力学效应进行了研究,并结合现场监测资料进行了验证。结果表明:降水加固隧道施工最大地表沉降是注浆加固的13.7倍,2种加固方案洞周土体变形规律一致,开挖10 d内变形值均达到稳定值的70%~80%左右;注浆加固下洞周土体均为压应力,降水加固开挖过程中在中隔壁及中隔板处土层出现拉应力;注浆加固下衬砌各部位受力均大于降水加固;降水加固塑性区极值是注浆加固的11.3倍,主要分布在两侧拱肩、拱腰及拱脚处;2种加固方案下地表沉降以及洞周土体变形的模拟值与监测值相近且变化规律基本一致。
Abstract
With the tunnel segment of Xi'an Metro Line 5 as engineering background, we examined and compared the ground settlement, soil deformation around the tunnel, and mechanics effect of water-rich loess tunnel reinforced by different methods (dewatering reinforcement and grouting reinforcement) via a seepage-stress coupling numerical model. We further validated the numerical result according to site monitoring data. Results demonstrated that the maximum ground settlement of the tunnel strengthened by dewatering reinforcement was 13.7 times that by grouting reinforcement. The laws of soil deformation around the tunnel under these two reinforcement schemes were consistent, and the deformation value of surrounding rock in ten days of excavation reached about 70%-80% of the stable value. Soil around the tunnel suffered from compressive stress under grouting reinforcement, while tensile stress appeared in the soil layer of the middle wall and the middle plate during the excavation under dewatering reinforcement. The stress of the lining under grouting reinforcement was larger than that under dewatering reinforcement. The extreme value of plastic zone under dewatering reinforcement was 11.3 times that of grouting reinforcement, mainly distributing at the shoulders, waists and feet of the arch on both sides. The simulated values of ground settlement and soil deformation around the tunnel under the two reinforcement schemes were similar and basically consistent with the change law of the monitored value.
关键词
富水黄土隧道 /
地层变形规律 /
降水加固 /
注浆加固 /
数值模拟 /
现场监测
Key words
water-rich tunnel /
strata deformation control /
dewatering reinforcement /
grouting reinforcement /
numerical simulation /
on-site monitoring
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王雪妮,韩国锋.地铁车站深基坑的变形预测及稳定性研究[J].raybet体育在线
院报,2018,35(10):77-81,87.
[2] PECK R B.Deep Excavations and Tunnelling in Soft Ground[C]∥Proceedings of the 7th International Conference of SMFE. State of the Art Volume. Mexico City : Sociedad Mexicana de Mecanica, 1969: 225-290.
[3] MINDLIN R D. Stress Distribution Around a Tunnel[J]. Transactions of the American Society of Civil Engineers, 1940, 195: 1117-1140.
[4] 朱才辉,李 宁.地铁施工诱发地表最大沉降量估算及规律分析[J].岩石力学与工程学报,2017,36(增刊1):3543-3560.
[5] 王三星,周志恒.浅埋黄土隧道应用井点排水的尝试[J].铁道工程学报,1988,5(1):55-63.
[6] 王 帅,孙少锐,舒 杨,等.双线浅埋隧道远近距离界定及地表沉降机理研究[J].raybet体育在线
院报,2017,34(9):115-121.
[7] 刘 芸,周玉兵.软岩小净距隧道中夹岩柱分区及加固方法研究[J].地下空间与工程学报,2013,9(2):373-379.
[8] 王秀英,郑维翰,张建国.软岩隧道玻纤锚杆预加固掌子面的稳定性分析[J].土木工程学报,2017,50(增刊1):53-58.
[9] 曹 振,雷 斌,张丰功.地铁湿陷性黄土暗挖隧道的施工风险及控制措施 [J].城市轨道交通研究,2013(3):97-99.
[10]来弘鹏,康 佐,谢永利,等.地铁区间隧道黄土地层注浆预加固技术研究[J].中国铁道科学,2014,35(1):47-54.
[11]李永宽,张顶立,房 倩.浅埋暗挖隧道下穿地表建筑物安全控制技术研究[J].土木工程学报,2015,48(增刊1):266-269.
[12]逄铁铮.全程注浆在隧道穿越既有建筑物中的试验研究[J].岩土力学,2008,29(12):3451-3458.
[13]薛晓辉,张 军,宿钟鸣.富水黄土隧道注浆加固机制及效果评价[J].重庆交通大学学报(自然科学版),2015,34(4):34-38.
基金
国家自然科学基金项目(41172237);中铁二十局集团有限公司2020年度科技研发项目(YF2000SD01A)