针对现有的各种数值方法在求解一维对流扩散方程时容易出现的数值振荡、假扩散等计算稳定性和计算精度不足问题,提出应用独立覆盖流形法进行数值求解的新思路,即分区的多项式级数逼近。基于标准的伽辽金法推导一维对流扩散方程的独立覆盖流形法求解公式。采用场变量的一阶导数在独立覆盖之间的窄条形覆盖重叠区域是否连续的后验误差估计方法,通过覆盖加密和级数升阶的h-p型混合自适应进行自动求解。给出的稳态和非稳态分析算例结果表明:分区级数的数值解稳定地逼近于精确解,最终两者很好地吻合;对于对流占优问题,自适应求解可以有效避免数值振荡。另外还尝试了将数值解代回微分方程计算残差作为误差指标,如果能使微分方程逐点满足,那么将是对数值解最严格的误差判断。
Abstract
In solving one-dimensional convection-diffusion equations, present numerical methods are prone to suffer from stability and accuracy problems caused by numerical oscillation and pseudo-diffusion. In view of this, an idea of applying Numerical Manifold Method (NMM) based on independent covers (the approximation using polynomial series piecewise-defined) to the numerical solution is proposed. The solution formula of the one-dimensional convection-diffusion equation is derived based on the standard Galerkin method. The posterior error estimation method about the continuity of the first-order derivative of field variable in the narrow overlapping area between independent covers is used for the automatic solving by h-p hybrid self-adaptive analysis with mesh refinement and ascending series order. The results of the steady-state and unsteady-state analysis examples show that the numerical solution of the piecewise-defined series steadily approximates and finally well fits the exact solution. For the convection-dominated problem, the adaptive solution effectively avoids numerical oscillation. In addition, the error index of the residual by substituting the numerical result back to the differential equation is successfully attempted. If the differential equation is solved point by point, the method would the most stringent error judgment for the numerical solution so far.
关键词
对流扩散方程 /
数值振荡 /
自适应分析 /
数值流形法 /
独立覆盖
Key words
convection-diffusion equation /
numerical oscillation /
self-adaptive analysis /
Numerical Manifold Method (NMM) /
independent covers
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张宏基,章本照,印建安.流体力学数值方法[M].北京:机械工业出版社,2003:170-178.
[2] 李人宪.有限体积法基础[M].2版.北京:国防工业出版社,2008.
[3] N·瓦逊哈克,P·德乔姆凡,黄 锋.对流-扩散问题的6节点三角形单元流线迎风有限元法和自适应网格重分技术[J].应用数学和力学,2008,29(11):1303-1313.
[4] POLLARD A, SIU A L W. The Calculation of Some Laminar Flows Using Various Discretisation Schemes[J]. Computer Methods in Applied Mechanics and Engineering, 1982, 35(3): 293-313.
[5] 胡健伟,田春松.对流-扩散问题的Galerkin部分迎风有限元方法[J].计算数学,1992,14(4):446-459.
[6] DOUGLAS J, Jr, RUSSELL T F. Numerical Methods for Convection-Dominated Diffusion Problems Based on Combining the Method of Characteristics with Finite Element or Finite Difference Procedures[J]. SIAM Journal on Numerical Analysis, 1982, 19(5): 871-885.
[7] 付红斐.对流扩散方程最优控制问题的特征有限元方法[D].济南:山东大学,2009.
[8] 王红梅.对流扩散方程的特征有限元方法[D].济南:山东大学,2012.
[9] 张 磊.对流占优的特征有限元方法[D].天津:河北工业大学,2010.
[10]刘 妍.对流扩散方程的特征间断有限元方法[D].南京:南京大学,2012.
[11]SHI G H. Manifold Method of Material Analysis[R]. Research Triangle Park NC: Army Research Office, 1992.
[12]石根华.数值流形方法与非连续变形分析[M].裴觉民,译.北京:清华大学出版社,1997.
[13]祁勇峰,苏海东,崔建华.部分重叠覆盖的数值流形方法初步研究[J].raybet体育在线
院报,2013,30(1):65-70.
[14]苏海东,颉志强,龚亚琦,等.基于独立覆盖的流形法的收敛性及覆盖网格特性[J].raybet体育在线
院报, 2016,33(2):131-136.
[15]苏海东,祁勇峰.部分重叠覆盖流形法的覆盖加密方法[J].raybet体育在线
院报,2013,30(7):95-100.
[16]苏海东,祁勇峰,龚亚琦,等.任意形状覆盖的数值流形方法初步研究[J].raybet体育在线
院报, 2013,30(12):91-96.
[17]苏海东,龚亚琦,颉志强,等.基于矩形独立覆盖初步实现结构静力分析的自动计算[J].raybet体育在线
院报, 2016,33(2):144-150.
[18]AN X M, LIU X Y, ZHAO Z Y,et al. Proof of Linear Independence of Flat-top PU-based High-order Approximation[J]. Engineering Analysis with Boundary Elements, 2014,44:104-111.
[19]林绍忠,祁勇峰,苏海东.数值流形法中覆盖函数的改进形式及其应用[J].raybet体育在线
院报,2006,23(6):55-58.
[20]BABUSKA I, RHEINBOLDT W C. A Posteriori Error Analysis of Finite Element Solutions for One-dimensional Problems[J]. SIAM Journal on Numerical Analysis, 1981,18(3):565-589.
[21]ZIENKIEWICZ O C, ZHU J Z. A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis[J]. International Journal for Numerical Methods in Engineering, 1987,24(2):337-357.
[22]AKIN J E. Finite Element Analysis with Error Estimators[M]. Oxford, UK: Elsevier Butterworth Heinemann, 2005.
[23]杨晓佳,魏剑英,葛永斌.求解Burgers方程的两层隐式紧致差分格式[J].高等学校计算数学学报, 2017,39(4):340-354.
[24]高 巍,张 宝,李 宏,等.Burgers方程的高阶紧致有限体积解法[J].应用数学,2016,29(2):331-339.
[25]苏海东,袁笑晨,龚亚琦.独立覆盖误差分析的子模型法[J].raybet体育在线
院报,2017,34(12):147-154.