耐撞磨性是影响再生骨料透水混凝土使用寿命及适用性的关键因素,目前国内外尚缺乏系统的研究。通过试验研究了不同水胶比、短切玄武岩纤维、粉煤灰、再生骨料替代率、双粒级骨料(5~10 mm,10~20 mm)掺量等因素对再生骨料透水混凝土耐撞磨性的影响。结果表明:水胶比超过0.27时,再生骨料透水混凝土撞磨时质量损失随水胶比增大而增大;内掺10%粉煤灰能够提高再生骨料透水混凝土耐撞磨性;再生骨料透水混凝土的耐撞磨性随着替代率的增加先增大后减小,替代率为50%时耐撞磨性最好;双粒级有利于提高再生骨料透水混凝土耐撞磨性能。此外,强度、密度及孔隙率是影响再生骨料透水混凝土耐撞磨性的主要因素,总体呈现强度越大、密度越大或是孔隙率越小,耐撞磨性越好的趋势。
Abstract
Impact-abrasion resistance is the key factor that affects the service life and applicability of recycled aggregate pervious concrete. At present, systematic research is lacking in China and abroad. The influences of water-cement ratio, chopped basalt fiber, fly ash, replacement rate of recycled aggregates, and amount of double-grained aggregate (5-10 mm, 10-20 mm) on the wear resistance of recycled aggregate pervious concrete were examined in this research. Test results indicate that when water-cement ratio exceeds 0.27, the mass loss from the recycled aggregate pervious concrete increases as the water-cement ratio rises, which means that the impact-abrasion resistance is ideal at a water-cement ratio of 0.27. The incorporation of 10% fly ash could improve the impact-abrasion resistance of recycled aggregate pervious concrete. As the replacement rate rises, the impact-abrasion resistance ameliorates at first and then reduces; the impact-abrasion resistance is optimal at the replacement rate of 50%. The double-grained grade is conducive to the improvement of impact-abrasion resistance of recycled aggregate pervious concrete. In addition, strength, density, and porosity are the main factors affecting the impact-abrasion resistance of recycled aggregate pervious concrete. In general, the greater the strength and density or the lower the porosity, the better the impact-abrasion resistance tends to be.
关键词
再生骨料透水混凝土 /
耐撞磨性 /
质量损失 /
影响因素 /
统计规律
Key words
recycled aggregate pervious concrete /
impact-abrasion resistance /
mass loss /
influencing factors /
statistical rule
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 霍 亮. 透水性混凝土路面材料的制备及性能研究[D]. 南京:东南大学, 2004.
[2] 冯昆荣. 多孔混凝土耐撞磨性研究[J].公路,2015(5):171-176.
[3] WU H, HUANG B, SHU X, et al. Laboratory Evaluation of Abrasion Resistance of Portland Cement Pervious Concrete[J]. Journal of Materials in Civil Engineering, 2011, 23(5):697-702.
[4] GAEDICKE C, MARINES A, MIANKODILA F. Assessing the Abrasion Resistance of Cores in Virgin and Recycled Aggregate Pervious Concrete[J]. Construction & Building Materials, 2014, 68:701-708.
[5] 杨 宁, 赵美霞. 再生骨料混凝土路面耐撞磨性的研究[J]. 建筑科学, 2011, 27(7):74-77.
[6] GUNEYISI E, GESOLU M, KAREEM Q, et al. Effect of Different Substitution of Natural Aggregate by Recycled Aggregate on Performance Characteristics of Pervious Concrete[J]. Materials & Structures, 2016, 49(1/2):521-536.
[7] ZAETANG Y, SATA V, WONGSA A, et al. Properties of Pervious Concrete Containing Recycled Concrete Block Aggregate and Recycled Concrete Aggregate[J]. Construction & Building Materials, 2016, 111: 15-21.
[8] 周 勇. 无砂透水再生混凝土试验研究[D].长沙:长沙理工大学,2009.
[9] 张学兵. 再生混凝土改性及配合比设计研究[D]. 长沙:湖南大学, 2015.
[10]连亚明, 徐仁崇, 石 莹,等. 响应面法优化再生骨料透水混凝土配合比设计[J]. 商品混凝土, 2017(9):50-54.
[11]徐仁崇,桂苗苗,刘君秀,等.透水混凝土配合比参数选择及设计方法研究[J].混凝土,2011(8):109-112.
[12]郭 磊,薛志龙, 陈守开,等. 基于预拌浓浆法的再生骨料混凝土性能试验研究[J]. 建筑材料学报, 2017,20(6):950-955.
[13]ASTM C39/C39M-2010, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens[S]. West Conshohocken, PA: American Society for Testing and Materials, 2010.
[14]ASTM C1747/C1747M-2013,Standard Test Method for Determining Potential Resistance to Degradation of Pervious Concrete by Impact and Abrasion1[S].West Conshohocken,PA:American Society for Testing and Materials,2013.
[15]沈旦申, 张荫济. 粉煤灰效应的探讨[J]. 硅酸盐学报, 1981(1):61-67.
[16]李子成,张爱菊,隋修志,等.透水混凝土界面增强增韧效应研究[J].硅酸盐通报,2017,36(2):747-752.
[17]薛 媛, 娄宗科. 粉煤灰混凝土抗冲磨性能试验研究[J]. 人民黄河, 2008, 30(5):94-95.
[18]肖建庄.再生混凝土单轴受压应力-应变全曲线试验研究[J].同济大学学报(自然科学版),2007,35(11):1445-1449.
[19]肖建庄, 兰 阳. 再生混凝土单轴受拉性能试验研究[J]. 建筑材料学报, 2006, 9(2):154-158.
[20]DU T, WANG W, LIU Z, et al. The Complete Stress-Strain Curve of Recycled Aggregate Concrete under Uniaxial Compression Loading[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2010, 25(5):862-865.
[21]赵庆新, 董进秋, 潘慧敏,等. 玄武岩纤维增韧混凝土冲击性能[J]. 复合材料学报, 2010, 27(6):120-125.
[22]PIGGOTT M R. Theoretical Estimation of Fracture Toughness of Fibrous Composites[J]. Journal of Materials Science, 1970,5(8):669-675.
[23]李为民, 许金余. 玄武岩纤维对混凝土的增强和增韧效应[J]. 硅酸盐学报, 2008, 36(4):476-481.
[24]KILIC A,ATIS C D,TEYMEN A,et al.The Influence of Aggregate Type on the Strength and Abrasion Resistance of High Strength Concrete[J]. Cement & Concrete Composites,2008,30(4):290-296.
[25]张 源. 再生骨料混凝土配合比优化及力学性能研究[D].西安:西安建筑科技大学,2016.
[26]潘 峰,党发宁,师俊平,等.级配与骨料率对混凝土力学行为的影响[J].西北农林科技大学学报(自然科学版),2017,45(3): 218-226.
[27]肖建庄,林壮斌,朱 军.再生骨料级配对混凝土抗压强度的影响[J].四川大学学报(工程科学版),2014,46(4): 154-160.
[28]陈守开,刘新飞,郭 磊,等.再生骨料掺配比对再生透水混凝土性能的影响[J].复合材料学报,2018,35(6): 1590-1598.
基金
国家自然科学青年基金项目(51309101);国家自然科学基金面上项目(51679092);河南省重大科技攻关项目(172102210372);河南省产学研合作项目(182107000031)