工业废料固化浅层淤泥质土研究

徐日庆, 文嘉毅, 董梅

raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (5) : 85-91.

PDF(5570 KB)
PDF(5570 KB)
raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (5) : 85-91. DOI: 10.11988/ckyyb.20190107
岩土工程

工业废料固化浅层淤泥质土研究

  • 徐日庆, 文嘉毅, 董梅
作者信息 +

Solidifying Shallow Sludge Soil Using Industrial Waste

  • XU Ri-qing, WEN Jia-yi, DONG Mei
Author information +
文章历史 +

摘要

我国滨海地区广泛分布淤泥质土,对其开展固化研究具有重要意义。以工业废料为固化材料,开展了针对浅层淤泥质土的固化剂研究。首先根据各种工业废料的自身性质,选出粉煤灰、磷石膏、电石渣共3种常见的工业废料作为固化剂的主要成分;然后,再通过混料试验,分别得到3,7,28 d的无侧限抗压强度回归方程,并计算得到各龄期所对应的最优配比。最后得出固化剂各组分质量的最佳配比为粉煤灰∶磷石膏∶电石渣=21.6∶26.8∶51.6,该配比在水化物反应过程中的协调性良好,并将该配比下的固化剂命名为JX18。试验结果表明:经JX18固化处理后的淤泥质土在7 d后无侧限抗压强度达到413.6 kPa,满足大型机械上机施工要求。研究成果可为滨海地区淤泥质土的地基处理提供一定的理论指导。

Abstract

Sludge soil is widely distributed in coastal areas of China. Studying the solidification of coastal sludge soil is of great significance. Research on industrial waste as the stabilizer for coastal sludge soil of shallow layer was carried out. In view of the properties of various industrial wastes, three common industrial wastes, namely, fly ash, phosphogypsum, and carbide slag, were selected as the main components of the soil stabilizer. Through mixture design experiment, the regression equations of unconfined compressive strength at age of 3 days, 7 days, and 28 days were obtained, and the optimum ratios corresponding to each age were calculated. The optimum ratio of each component of the soil stabilizer is: flyash∶phosphogypsum∶carbide slag=21.6∶26.8∶51.6. The hydration reaction process is well coordinated under the optimum ratio. The soil stabilizer under the optimum ratio was named JX18. Test results showed that the unconfined compressive strength of the sludge soil solidified by JX18 reached 413.6 kPa after 7 days, which meets the requirements of large-scale mechanical construction. The research results provide theoretical guidance for the foundation treatment of sludge soil in coastal areas.

关键词

淤泥质土 / 工业废料 / 固化剂 / 混料试验 / 粉煤灰 / 磷石膏 / 电石渣

Key words

sludge soil / industrial waste / soil stabilizer / mixture design experiment / fly ash / phosphogypsum / carbide slag

引用本文

导出引用
徐日庆, 文嘉毅, 董梅. 工业废料固化浅层淤泥质土研究[J]. raybet体育在线 院报. 2020, 37(5): 85-91 https://doi.org/10.11988/ckyyb.20190107
XU Ri-qing, WEN Jia-yi, DONG Mei. Solidifying Shallow Sludge Soil Using Industrial Waste[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(5): 85-91 https://doi.org/10.11988/ckyyb.20190107
中图分类号: TU447   

参考文献

[1] 陈海鸥. 大型围海造地吹填土地基处理技术的应用初探[J]. 四川水泥, 2017(5): 87.
[2] 席宁中, 于海成, 席锋仪. 围海造地软弱地基综合处理技术[J]. 建筑科学, 2016, 32(1): 121-128.
[3] 单 梅, 许英姿, 吴云峰, 等. 粉煤灰生石灰加固吹填淤泥质土的试验研究[J]. 广西城镇建设, 2013(3): 100-103.
[4] 金裕民, 郑旭卫, 蔡纯阳, 等. 水泥粉煤灰固化滩涂淤泥的强度与固化机理研究[J]. 科技通报, 2015,31(5): 132-136.
[5] 梁仕华, 牛九格, 王 蒙, 等. 水泥矿渣固化锌污染淤泥的试验研究[J]. 工业建筑, 2017, 47(8): 89-94.
[6] 裴启梦, 王兆伟, 张义祝, 等. 河道及湖泊疏浚淤泥的改性研究[J]. 江苏水利, 2017(3): 14-20.
[7] 饶春义, 朱剑锋, 庹秋水, 等. 镁质水泥固化淤泥一维压缩特性研究[J]. 水文地质工程地质, 2018, 45(4):94-99,107.
[8] 史旦达, 齐梦菊, 许冰沁, 等. 固化疏浚土宏-微观力学特性室内试验研究[J]. raybet体育在线 院报, 2018, 35(1): 117-122,127.
[9] 戴 蕾, 李战国, 黄 新. 利用工业废渣制备软土固化剂的可行性探讨[J]. 中国工程科学, 2010, 12(3): 56-60.
[10]储诚富, 王利娜, 李小春, 等. 水泥电石渣固化淤泥-铁尾矿渣的强度试验[J]. 工业建筑, 2015, 45(5): 81-86.
[11]丁建文, 刘铁平, 曹玉鹏, 等. 高含水率疏浚淤泥固化土的抗压试验与强度预测[J]. 岩土工程学报, 2013, 35(增刊2): 55-60.
[12]桂 跃, 王其合, 张 庆. 工业废料固化高含水率疏浚淤泥强度特性分析[J]. 武汉工程大学学报, 2012, 34(1): 36-42.
[13]宁建国, 黄 新. 利用工业废渣配制水泥系软土固化剂探讨[J]. 工业建筑, 2005, 35(增刊1): 432-437.
[14]陶君军. 工业废渣复合固化疏浚淤泥及路基分层填筑技术研究[D]. 杭州:浙江工业大学, 2016.
[15]桂 跃, 高玉峰, 张 庆, 等. 疏浚淤泥生石灰-磷石
膏材料化处理效果[J]. 浙江大学学报(工学版), 2010, 44(10): 1974-1978.
[16]金红娣. 混料试验设计若干问题的研究[D]. 上海:上海师范大学, 2008.
[17]吴 军, 汪洪星, 谈云志, 等. 腐殖酸对污泥固化土长期强度的劣化效应[J]. raybet体育在线 院报, 2017, 34(8): 130-134.
[18]畅 帅. 杭州软土固化优化研究[D]. 杭州:浙江大学, 2014.
[19]邵 杰. 上覆固化层淤泥地基承载力分析[J]. 建筑结构, 2016(增刊1): 828-832.
[20]ZHANG Ding-wen, LIU Zi-ming, SUN Xun, et al. Laboratory Tests on Enhancing Strength of Cement Stabilized Organic Soil with Addition of Phosphor Pgypsum and Calcium Aluminate Cement[J]. Journal of Southeast University (English Edition), 2017, 33(3): 301-308.

基金

国家自然科学基金项目(41672264)

PDF(5570 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map