长江中下游江段泥沙对Pb2+的吸附特征

韩丁, 黎睿, 汤显强, 胡园, 郭伟杰

raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (5) : 15-22.

PDF(5552 KB)
PDF(5552 KB)
raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (5) : 15-22. DOI: 10.11988/ckyyb.20190119
水资源与环境

长江中下游江段泥沙对Pb2+的吸附特征

  • 韩丁1,2, 黎睿1, 汤显强1,3, 胡园1, 郭伟杰1
作者信息 +

Adsorption of Pb2+ on Sediments in the Middle andLower Reaches of the Yangtze River

  • HAN Ding1,2, LI Rui1, TANG Xian-qiang1,3, HU Yuan1, GUO Wei-jie1
Author information +
文章历史 +

摘要

以长江中下游武汉至上海崇明岛江段河床泥沙样品为研究对象,通过振荡吸附试验研究了泥沙对Pb2+的吸附特征,分析了泥沙浓度、泥沙粒径、有机质含量等对Pb2+吸附的影响。结果表明:泥沙对Pb2+的吸附平衡时间为20 h,吸附动力学过程可以用准一级动力学、准二级动力学、Elovich方程对试验数据进行分析拟合,拟合系数均在0.85以上,尤以准二级动力学方程为佳,其拟合系数高达0.997 8。Langmuir模型对Pb2+的等温吸附的拟合系数R2均达到0.9以上,Pb2+的等温吸附过程为单分子层吸附,吸附大多发生在泥沙表面,主要为物理吸附过程。随着泥沙浓度的增加,吸附效率显著提高,当泥沙浓度增加为1 g/L时,吸附效率达到最大值(≈99.8%)。泥沙对Pb2+的吸附热力学参数ΔG<0,ΔH>0,表明该过程可以自发进行,升高温度有利于提高泥沙对Pb2+的吸附量;泥沙中有机质含量越高,平均吸附键能越大,两者呈显著正相关关系(R2=0.968 2, p<0.01)。泥沙对Pb2+吸附量总体呈现出随泥沙的粒径减小而增大的趋势,泥沙对Pb2+的吸附主要发生在粒径<0.074 mm的粒径分组中。应该加强对长江中下游水体含沙量及颗粒级配的监测,以随时掌握水沙变化对Pb2+等污染物迁移转化的影响。

Abstract

The sediment samples from Wuhan to Chongming Island of Shanghai in the middle and lower reaches of the Yangtze River were collected for studying the characteristics of adsorption of Pb2+ by sediment via oscillatory adsorption test. The effects of sediment concentration, sediment particle size and organic matter content on Pb2+ adsorption were also analyzed. Results show that the adsorption of Pb2+on sediment reaches equilibrium after 20 hours. The adsorption kinetics can be analyzed and fitted by quasi-first-order kinetics, quasi-second-order kinetics and Elovich equation. The fitting coefficients are all above 0.85, and especially the fitting coefficient of quasi-second-order kinetics equation amounts to 0.997 8. The values of fitting correlation coefficient R2 of Langmuir model for isothermal adsorption of Pb2+ are all above 0.9. The isothermal adsorption process of Pb2+ is monolayer adsorption mostly on the surface of sediment mainly in the manner of physical adsorption.With the increase of sediment concentration,the adsorption efficiency enhances significantly.When the sediment concentration increases to 1 g/L, the adsorption efficiency reaches the maximum (≈99.8%). The thermodynamic parameters ΔG < 0 and ΔH > 0 of sediment adsorption for Pb2+ reveals that the process can be carried out spontaneously. Temperature rising is conducive to instigating the adsorption of Pb2+. Organic matter content is in a significant positive correlation (R2=0.968 2, p<0.01) with adsorption energy. The amount of Pb2+ adsorbed by sediment increases with the decrease of sediment particle size. The adsorption of Pb2+ by sediments mainly occurs in particle size groups smaller than 0.074 mm. Monitoring on the sediment concentration, particle size distribution and its chemical composition in the middle and lower reaches of the Yangtze River should be strengthened so as to keep abreast of the influence of water and sediment changes on the migration and transformation of pollutants such as Pb2+.

关键词

泥沙 / Pb2+ / 吸附 / 重金属 / 长江中下游

Key words

sediment / Pb2+ / adsorption / heavy metal / middle and lower reaches of the Yangtze River

引用本文

导出引用
韩丁, 黎睿, 汤显强, 胡园, 郭伟杰. 长江中下游江段泥沙对Pb2+的吸附特征[J]. raybet体育在线 院报. 2020, 37(5): 15-22 https://doi.org/10.11988/ckyyb.20190119
HAN Ding, LI Rui, TANG Xian-qiang, HU Yuan, GUO Wei-jie. Adsorption of Pb2+ on Sediments in the Middle andLower Reaches of the Yangtze River[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(5): 15-22 https://doi.org/10.11988/ckyyb.20190119
中图分类号: X524   

参考文献

[1]NEEDLEMAN H. Lead Poisoning[J]. Annual Review of Medicine, 2004, 55: 209-220.
[2] WANG X, HAN Z, WANG W, et al. Continental-scale Geochemical Survey of Lead (Pb) in Mainland China’s Pedosphere: Concentration, Spatial Distribution and Influences[J]. Applied Geochemistry, 2019, 100: 55-63.
[3] HAN L,GAO B,HAO H,et al. Lead Contamination in Sediments in the Past 20 Years: A Challenge for China[J]. Science of the Total Environment,2018,640/641:746.
[4] YANG Z, WANG Y, SHEN Z, et al. Distribution and Speciation of Heavy Metals in Sediments from the Mainstream, Tributaries, and Lakes of the Yangtze River Catchment of Wuhan, China[J]. Journal of Hazardous Materials, 2009, 166(2):1186-1194.
[5] YI Y, YANG Z, ZHANG S. Ecological Risk Assessment of Heavy Metals in Sediment and Human Health Risk Assessment of Heavy Metals in Fishes in the Middle and Lower Reaches of the Yangtze River Basin[J]. Environmental Pollution, 2011, 159(10): 2575-2585.
[6] YANG Z, XIA X, WANG Y, et al. Dissolved and Particulate Partitioning of Trace Elements and Their Spatial-temporal Distribution in the Changjiang River[J]. Journal of Geochemical Exploration, 2014, 145: 114-123.
[7] 方 涛, 张晓华, 肖邦定, 等. 水体悬移质对重金属吸附规律研究[J]. 长江流域资源与环境, 2001, 10(2): 90-97.
[8] 余国文. 长江水中泥沙及悬浮粒子对Pb2+的吸附作用研究[J]. 工业安全与环保, 2007, 33(2):6-8.
[9] 任子航, 马秀兰, 王而力. 西辽河不同粒级沉积物对重金属铅的富集特征[J]. 环境科学与技术, 2014(增刊2):175-182.
[10]HOSSEINI M, SAJJADI N. The Comparison of Selenium and Lead Accumulation Between Contaminated Muddy and Sandy Sediments from Four Estuaries along the Persian Gulf: Effect of Grain Size[J]. Environmental Geochemistry & Health, 2018, 40(4): 1648-1654.
[11]KHAN B, ULLAH H, KHAN S, et al. Sources and Contamination of Heavy Metals in Sediments of Kabul River: The Role of Organic Matter in Metals Retention and Accumulation[J]. Soil and Sediment Contamination: An International Journal, 2016, 25(8): 891-904.
[12]ZHANG M, JIN C C, XU L H, et al. Effect of Temperature, Salinity, and pH on the Adsorption of Lead by Sediment of a Tidal River in East China[C]∥Proceedings of the 2012 International Conference on Biomedical Engineering and Biotechnology (iCBEB). IEEE, Macau, China. May 28-30, 2012: 1389-1391.
[13]王亚平, 王 岚, 许春雪, 等. pH对长江下游沉积物中重金属元素Cd、Pb释放行为的影响[J]. 地质通报, 2012, 31(4): 594-600.
[14]UGOCHUKWU N,MOHAMED I,ALI M,et al. Impacts of Inorganic Ions and Temperature on Lead Adsorption onto Variable charge Soils[J]. Catena,2013,109(5):103-109.
[15]HEGEDÜSOVÁA,HEGEDÜS O,TÓTH T,et al. Adsorption Processes of Lead Ions on the Mixture Surface of Bentonite and Bottom Sediments[J]. Bulletin of Environmental Contamination and Toxicology,2016,97(6):876-880.
[16]HUANG L, JIN Q, TANDON P, et al. High-resolution Insight into the Competitive Adsorption of Heavy Metals on Natural Sediment by Site Energy Distribution[J]. Chemosphere, 2018, 197: 411-419.
[17]MENDE M, SCHWARZ D, STEINBACH C, et al. The Influence of Salt Anions on Heavy Metal Ion Adsorption on the Example of Nickel[J]. Materials, 2018, 11(3):373.
[18]高 宏, 暴维英, 张曙光, 等. 多沙河流污染化学与生态毒理研究[M]. 郑州:黄河水利出版社, 2001.
[19]HE M,ZHENG H,HUANG X,et al. Yangtze River Sediments from Source to Sink Traced with Clay Mineralogy[J].Journal of Asian Earth Sciences,2013,69(12):60-69.
[20]WANG Y,RHOADS B L, DONG W, et al. Impacts of Large Dams on the Complexity of Suspended Sediment Dynamics in the Yangtze River[J]. Journal of Hydrology, 2018, 558: 184-195.
[21]潘婵娟, 黎 睿, 汤显强, 等. 三峡水库蓄水至175 m后干流沉积物理化性质与磷形态分布特征[J]. 环境科学, 2018, 39(6): 113-121.
[22]LI S, ZENG Z, XUE W. Adsorption of Lead Ion from Aqueous Solution by Modified Walnut Shell: Kinetics and Thermodynamics[J]. Environmental Technology, 2018, DOI: 10.1080/09593330.2018.1430172.
[23]水利部长江水利委员会. 长江泥沙公报[M]. 武汉: 长江出版社, 2003—2016.
[24]余国安, 王兆印, 刘 成, 等. 长江中游底泥质量现状调查研究[J]. 泥沙研究, 2008, 8(4): 14-20.
[25]夏福兴, 陈邦林, 吴欣然,等. 长江口细颗粒泥沙对Pb、Cd、Cu的吸附[J]. 华东师范大学学报(自然科学版), 1987(2): 69-76.
[26]唐登勇, 胥瑞晨, 张 聪, 等. 稻壳灰对水中低浓度Pb(Ⅱ)的吸附特性[J]. 中国农村水利水电, 2017(11):74-78.
[27]陈 野, 李青云, 曹慧群. 河流泥沙吸附磷的研究现状与展望[J]. raybet体育在线 院报, 2014, 31(5): 12-16.
[28]王 岚. 长江水系及流域典型土壤中Cd等重金属元素的环境地球化学行为研究[D]. 北京: 中国地质科学院, 2010.
[29]左 航, 陈艺贞, 陈建华,等. ICP-MS研究黄河三湖河口表层沉积物对Cd2+和Cu2+的吸附-解吸特性[J]. 光谱学与光谱分析, 2017, 37(3): 902-909.
[30]CHEN Y, ZHANG D. Adsorption Kinetics, Isotherm and Thermodynamics Studies of Flavones from Vaccinium Bracteatum Thunb Leaves on NKA-2 Resin[J]. Chemical Engineering Journal, 2014, 254: 579-585.
[31]AHMED R, YAMIN T, ANSARI M S, et al. Sorption Behaviour of Lead(II) Ions from Aqueous Solution onto Haro River Sand[J]. Adsorption Science & Technology, 2009, 24(6): 475-486.
[32]任加国, 武倩倩. 黄河口海域沉积物对重金属的吸附[J]. 海洋地质与第四纪地质, 2009, 29(4): 129-133.

[33]姚晓飞. 南沙河、凉水河重金属污染分析及其运移规律研究[D]. 北京: 北京交通大学, 2011.
[34]吴慧英, 张 颖, 童笔峰, 等. Cd2+、Pb2+在湘江流域河床表层沉积物上的吸附特性研究[J]. 环境工程, 2016, 34(6): 1-5.
[35]SOLTAN M E, RASHED M N, TAHA G M. Heavy Metal Levels and Adsorption Capacity of Nile River Sediments[J]. International Journal of Environmental Analytical Chemistry, 2001, 80(3): 167-186.
[36]黄岁梁, 万兆惠, 王兰香. 泥沙浓度和水相初始浓度对泥沙吸附重金属影响的研究[J]. 环境科学学报, 1995, 15(1): 66-76.
[37]王利花, 周云轩. 大通站水沙关系演变驱动因素分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 226-233.
[38]TUTEM E, APAK R, UNAL C F. Adsorptive Removal of Chlorophenols from Water by Bituminous Shale[J]. Water Research, 1998, 32(8): 2315-2324.
[39]李璐娟, 夏建国, 刘 朗, 等. 紫色土有机质对团聚体吸附-解吸Pb2+的影响[J]. 生态学杂志, 2014, 33(5):1274-1283.
[40]范德江, 杨作升, 毛 登, 等. 长江与黄河沉积物中粘土矿物及地化成分的组成[J]. 海洋地质与第四纪地质, 2001, 21(4):7-12.
[41]姜腾达. 粘土矿物对水中Pb2+、Cu2+、Cd2+的吸附及机理研究[D]. 长沙: 中南大学, 2014.
[42]陈 萌,吴志强. 泥沙粒径对铜离子吸附贡献率的影响研究[J]. 广东水利水电, 2018(1): 15-18.

基金

国家自然科学基金项目(41907401); 国家高层次人才特殊支持计划项目(CKSD2019542/SH); 中国长江三峡集团有限公司资助项目(201903145)

PDF(5552 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map