厦门地铁隧道变形控制指标的确定方法

李东明

raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (4) : 90-95.

PDF(4274 KB)
PDF(4274 KB)
raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (4) : 90-95. DOI: 10.11988/ckyyb.20181281
岩土工程

厦门地铁隧道变形控制指标的确定方法

  • 李东明
作者信息 +

Determining Deformation Control Index for Xiamen Metro Tunnel

  • LI Dong-ming
Author information +
文章历史 +

摘要

依托厦门风化花岗岩地层的盾构隧道工程,以土体参数的空间变异性为切入点,针对当前隧道变形控制指标体系存在的针对性不足、科学性不够及适用性不强等问题,结合现场监测数据的统计分析和基于随机场理论的可靠度分析,提出了厦门轨道交通隧道工程变形控制指标的综合确定方法。结果表明:厦门典型风化花岗岩地层中,盾构隧道施工引起最大地表沉降的统计平均值为-13.50 mm,监测数据的95%分位数约为-32.42 mm;根据可靠度分析,最大地表沉降服从标准正态或对数正态分布形式,随机计算所得最大地表沉降的95%分位数为-35.43 mm。从安全角度出发,建议将-35.0 mm作为厦门典型风化花岗岩地层盾构隧道施工地表沉降的控制值。

Abstract

Present control index systems for soil deformation is insufficiently targeted, scientific, and applicable. In view of this, we present a comprehensive method of determining the deformation control index for the tunnel project of Xiamen metro line in weathered granite stratum as an example. The method introduces the spatial variation of soil parameters based on statistical analysis of field monitoring data and stochastic reliability analysis. Results demonstrate that in the typical weathered granite stratum in Xiamen, the statistical mean value of the maximum surface settlement caused by shield tunneling is -13.5 mm, and the 95% quantiles of maximum surface settlement is -32.42 mm. According to the stochastic reliability analysis, the maximum surface settlement is in the form of standard normal or lognormal distribution, and the 95% quantiles of maximum surface settlement obtained by stochastic calculation is - 35.43 mm. From the point of view of safety, we suggest to take -35.0 mm as the control value of surface settlement during the twin shield tunneling in Xiamen typical weathered granite stratum.

关键词

隧道变形 / 地表沉降 / 控制指标体系 / 随机场理论 / 随机可靠度分析 / 厦门轨道交通

Key words

tunnel deformation / ground settlement / control index system / random field theory / stochastic reliability analysis / Xiamen rail transit

引用本文

导出引用
李东明. 厦门地铁隧道变形控制指标的确定方法[J]. raybet体育在线 院报. 2020, 37(4): 90-95 https://doi.org/10.11988/ckyyb.20181281
LI Dong-ming. Determining Deformation Control Index for Xiamen Metro Tunnel[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(4): 90-95 https://doi.org/10.11988/ckyyb.20181281
中图分类号: U45   

参考文献

[1] GB 50497—2009,建筑基坑工程监测技术规范[S]. 北京:中国计划出版社, 2009.
[2] GB 50911—2013,城市轨道交通工程监测技术规范[S]. 北京:中国建筑工业出版社,2014.
[3] JGJ 120—2012,建筑基坑支护技术规程[S]. 北京:中国建筑工业出版社,2012.
[4] 刘 涛. 基于数据挖掘的基坑工程安全评估与变形预测研究[D]. 上海:同济大学, 2007.
[5] 徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海:上海交通大学, 2007.
[6] 王 蓉. 软土地区地铁深基坑开挖施工的基坑本体安全评价研究[D]. 上海:同济大学, 2008.
[7] VANMARCKE E H. Probabilistic Modeling of Soil Profiles[J]. Journal of the Geotechnical Engineering Division,1977,103(11):1227-1246.
[8] PHOON K K,KULHAWY F H. Characterization of Geotechnical Variability[J]. Canadian Geotechnical Journal,1999,36(4):612-624.
[9] EL-RAMLY H,MORGENSTERN N R,CRUDEN D M. Probabilistic Stability Analysis of a Tailings Dyke on Presheared Clay-shale[J]. Canadian Geotechnical Journal,2003,40(1):192-208.
[10]吴振君,葛修润,王水林. 考虑地质成因的土坡可靠度分析[J]. 岩石力学与工程学报,2011,30(9):1904-1911.
[11]李健斌,陈 健,罗红星,等. 基于随机场理论的双线盾构隧道地层变形分析[J]. 岩石力学与工程学报,2018,37(7):1748-1765.

基金

云南联合基金重点项目(U1402231);湖北省技术创新重大项目(2017ACA186)

PDF(4274 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map