为了研究试验材料与有机玻璃界面剪切特性,对中细砂-有机玻璃接触界面开展直剪试验,对比了不同法向应力下的应力-应变曲线,并以峰值强度为界限将曲线划分为峰前阶段和峰后阶段2部分,在此基础上,建立了适用于中细砂-有机玻璃界面的剪切模型,通过分析试验数据得到了模型参数,最后与实测数据进行了对比验证。结果表明:随着应变或剪切位移的增加,中细砂-有机玻璃界面上的剪切过程会表现出明显的应变软化特征,界面峰值强度和残余强度包络线可通过摩尔-库伦强度准则计算得到,对应的峰值摩擦角为28.3°,残余摩擦角为24.1°。利用研究得到的参数所构建的峰前与峰后模型能够较好地拟合实测数据,可为地质灾害物理模拟试验设计及材料接触界面剪切行为建模提供参考。
Abstract
Direct shear test was conducted on the contact interface between medium-fine sand and polymethyl methacrylate to investigate the interfacial shear properties of test materials and polymethyl methacrylate. The stress-strain curves under different normal stresses were compared and were divided into two stages, namely, the pre-peak stage and the post-peak stage with the peak strength as boundary. A shear model suitable for the interface between medium-fine sand and polymethyl methacrylate was established, and the model parameters were obtained via test data analysis and were compared with measured data. Results revealed that with the increase of strain or shear displacement, the shear process displayed obvious strain-softening effect on the interface between medium-fine sand and polymethyl methacrylate. The envelopes of peak strength and residual strength of the interface can be calculated by using Mohr-coulomb strength criterion, with the corresponding peak friction angle reaching 28.3° and the residual friction angle 24.1°. The pre-peak and post-peak model constructed by using the parameters obtained in the study could fit the experimental data well, hence providing a reference for physical simulation test design of geological hazards and shear behavior modeling of materials' contact interface.
关键词
中细砂 /
剪切行为 /
界面模型 /
直剪试验 /
有机玻璃
Key words
medium-fine sand /
shear behaviour /
interface model /
direct shear test /
polymethyl methacrylate
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郝明辉,许 强,杨 磊,等.滑坡-碎屑流物理模型试验及运动机制探讨[J].岩土力学,2014,35(增刊1):127-132.
[2] 李天话,樊晓一,姜元俊.岩土体颗粒级配对滑坡碎屑流冲击作用的影响研究[J].山地学报,2018,36(2):289-297.
[3] 杜 锋,许 模,肖先煊,等.顺层缓倾型水库滑坡稳定性物理模拟试验研究—以向家坪滑坡为例[J].工程地质学报,2018,26(3):694-702.
[4] REDDY K R, KOSGI S, MOTAN S. Interface Shear Behavior of Landfill Composite Liner Systems: A Finite Element Analysis[J]. Geosynthetic International,1996, 3(2): 247-275.
[5] 胡黎明,濮家骝.土与结构物接触面物理力学特性试验研究[J].岩土工程学报,2001,23(4):431-435.
[6] ESTERHUIZEN J J B, FLIZ G M, DUNCAN J M. Constitutive Behavior of Geosynthetic Interface[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 834-840.
[7] 张 嘎,张建民.粗粒土与结构接触面单调力学特性的试验研究[J].岩土工程学报,2004,26(1):21-25.
[8] 张 嘎,张建民.循环荷载作用下粗粒土与结构接触面变形特行的试验研究[J].岩土工程学报,2004,26(2):254-258
[9] 李 键. 粗糙度对粘性土-混凝土结构接触面力学特性的影响[D].长沙:中南大学,2014.
[10]王永洪,张明义,刘俊伟,等.接触面粗糙度对黏性土-混凝土界面剪切特性影响研究[J].工业建筑,2017,47(10):93-97.
[11]王永洪,张明义,白晓宇,等.不同含水率状态下黏性土-混凝土界面剪切特性室内试验研究[J].防灾减灾工程学报,2018,38(1):118-123,192.
[12]王永洪,张明义,白晓宇,等.剪切速率对黏性土混凝土界面抗剪强度影响的试验研究[J].土木与环境工程学报(中英文),2019,41(1):48-54.
[13]成 浩,王 晅,张家生,等.颗粒粒径对粗粒土-混凝土接触面剪切特性影响试验研究[J].应用基础与工程科学学报,2018,26(1):145-153.
[14]李 爽,刘 洋,吴可嘉.砂土直剪试验离散元数值模拟与细观变形机理研究[J].raybet体育在线
院报,2017,34(4):104-110,116.
[15]SEO M W, PARK I J, PARK J B. Development of Displacement-Softening Model for Interface Shear Behavior Between Geosynthetics[J]. Soils and Foundations, 2004, 44(6): 27-38.
[16]周 健,王家全,孔祥利,等.砂土颗粒与土工合成材料接触界面细观研究[J].岩土工程学报,2010,32(1):61-67.
[17]KONDNER R L. Hyperbolic Stress-Strain Response: Cohesive Soils[J]. Journal of Soil Mechanics and Foundations Division, 1963, 89(1): 289-324.
[18]JANBU N. Soil Compressibility as Determined by Oedometer and Triaxial Test[C]∥Proceedings of the 3rd European Conference on Soil Mechanics and Foundation Engineering. Wiesbaden,1963: 19-25.
[19]DUNCAN J M, CHANG C Y. Nonlinear Analysis of Stress and Strain in Soils[J]. Journal of Soil Mechanics and Foundations Division, 1970, 96(SM5): 1629-1653.
[20]PARK I J, DESAI C S. Cyclic Behavior and Liquefaction of Sand Using Disturbed State Concept[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(9): 834-846.
[21]ANUBHAV, BASUDHAR P K. Modeling of Soil-woven Geotextile Interface Behavior from Direct Shear Test Results[J]. Geotextiles and Geomembranes, 2009, 28(4): 403-408.
基金
国家自然科学基金项目(41702298,41602359);陕西省自然科学基础研究计划项目(2017JQ4020);陕西省教育厅专项科研计划项目(17JK0515)