基于年际Landsat系列数据的长汀县水土流失治理区植被恢复监测

张仕山, 朱雄斌, 汪小钦

raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (4) : 43-49.

PDF(4990 KB)
PDF(4990 KB)
raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (4) : 43-49. DOI: 10.11988/ckyyb.20190014
水土保持与生态建设

基于年际Landsat系列数据的长汀县水土流失治理区植被恢复监测

  • 张仕山1,2, 朱雄斌1,2,3, 汪小钦1,2
作者信息 +

Monitoring Vegetation Restoration in Soil and Water Loss Governance Area in Changting County Based on Interannual Landsat Time-series Dataset

  • ZHANG Shi-shan1,2, ZHU Xiong-bin1,2,3, WANG Xiao-qin1,2
Author information +
文章历史 +

摘要

恢复植被是水土流失治理最普遍的一种方式,植被不仅可以提高水土保持能力,同时也能作为水土流失治理成效好坏的标准。以福建省长汀县2000—2010年治理区为主要研究对象,通过构建2000—2015年以年为时间间隔的季相一致的中等分辨率Landsat时序数据集,利用归一化植被指数NDVI时序集对治理区域植被生长状态进行监测,并定量分析植被恢复情况与治理时间长度以及治理方式之间的关系。结果表明:①治理区域植被整体恢复趋势要明显优于未治理区域;②不同治理方式下植被恢复也有所差别,园改、经济林果和重复治理下植被恢复相对较快,封禁治理下植被恢复速度相对缓慢;③不同治理方式下植被增长幅度存在差异;④同种治理方式下,不同年份开始治理的区域植被恢复趋势也存在一定差异性。研究结果可为区域水土流失治理模式的选择提供参考,以期实现水土流失治理成效定量分析。

Abstract

The restoration of vegetation is the most common approach to control soil and water loss. Vegetation not only improves the capacity of soil and water conservation, but also serves as a standard for soil erosion control. In this research we took the governance area of Changting County, Fujian Province from 2000 to 2010 as the research object. By constructing a medium-resolution time-series dataset from 2000 to 2015, we employed the NDVI time-series dataset to monitor the status of vegetation growth and quantified the relation between the restoration of vegetation and the time or pattern of governance. Results indicated that: (1) The overall tendency of vegetation restoration in the governance area is significantly better than that in untreated area. (2) the vegetation restoration under different governance patterns differs as well: the reform of forest-grass and economic fruit-forest as well as repetitive governance are faster to restore vegetation than closed-off reform. (3) The vegetation growth rate in different governance patterns varies also; whereas in the same governance model, the restoration tendency depends on governance age. The research findings are expected to offer reference for the selection of governance pattern and quantitative analysis.

关键词

水土流失治理 / Landsat时序数据集 / 植被指数 / 一元线性拟合 / 植被恢复 / 长汀县

Key words

soil and water erosion control / Landsat time-series dataset / vegetation index / unitary linear fitting / vegetation restoration / Changting county

引用本文

导出引用
张仕山, 朱雄斌, 汪小钦. 基于年际Landsat系列数据的长汀县水土流失治理区植被恢复监测[J]. raybet体育在线 院报. 2020, 37(4): 43-49 https://doi.org/10.11988/ckyyb.20190014
ZHANG Shi-shan, ZHU Xiong-bin, WANG Xiao-qin. Monitoring Vegetation Restoration in Soil and Water Loss Governance Area in Changting County Based on Interannual Landsat Time-series Dataset[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(4): 43-49 https://doi.org/10.11988/ckyyb.20190014
中图分类号: S157.2    TP75   

参考文献

[1] 徐宪立,马克明,傅伯杰,等.植被与水土流失关系研究进展[J].生态学报,2006,26(9):3137-3143.
[2] 汪小钦,刘亚迪,周伟东,等.基于TAVI的长汀县植被覆盖度时空变化研究[J].农业机械学报,2016,47(1):289-296.
[3] 侯 鹏,王 桥,房 志,等.国家生态保护重要区域植被长势遥感监测评估[J].生态学报,2013,33(3):780-788.
[4] LUO J, LI X, MA R, et al. Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake,China[J]. Ecological Indicators, 2016, 60: 503-513.
[5] ZANCHETTA A,BITELLI G,KARNIELI A.Tasselled Cap Transform for Change Detection in the Drylands:Findings for SPOT and Landsat Satellites Using FOSS Tools[C]∥Proceedings of SPIE-Third International Conference on Remote Sensing and Geoinformation of the Environment. The International Society for Optical Engineering. Paphos, Cyprus, June 15, 2015: 1287-1291.
[6] 刘 峰,刘素红,向 阳.园地植被覆盖度的无人机遥感监测研究[J].农业机械学报,2014,45(11):250-257.
[7] PRIMICERIO J, GENNARO S F D, FIORILLO E, et al. A Flexible Unmanned Aerial Vehicle for Precision Agriculture[J]. Precision Agriculture, 2012, 13(4): 517-523.
[8] 李 冰,刘镕源,刘素红,等.基于低空无人机遥感的冬小麦覆盖度变化监测[J].农业工程学报,2012,28(13):160-165.
[9] SAKAMOTO T, GITELSON A A, NGUY-ROBERTSON A L, et al. An Alternative Method Using Digital Cameras for Continuous Monitoring of Crop Status[J]. Agricultural & Forest Meteorology, 2012, 154(6): 113-126.
[10]TEILLET P M, BARKER J L, MARKHAM B L, et al. Radiometric Cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM Sensors Based on Tandem Data sets[J]. Remote Sensing of Environment, 2001, 78(1): 39-54.
[11]LUNETTA R S, LYON J G, GUNIDON B, et al. North American Landscape Characterization Dataset Development and Data Fusion Issues[J]. Photogrammetric Engineering & Remote Sensing, 1998, 64(8): 821-829.
[12]寿敬文,陈 雪,马建文,等.采用ALR算法对Landsat-7图像缺行修复的应用研究[J].光电子·激光,2006,17(3):368-371.
[13]GAO F, MASEK J, SCHWALLER M, et al. On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance[J]. IEEE Transactions on Geoscience & Sensing Remote, 2006, 44(8): 2207-2218.
[14]CARLSON T N,RIPLEY D A.On the Relation Between NDVI,Fractional Vegetation Cover,and Leaf Area Index[J]. Remote Sensing of Environment,1997,62(3):241-252.
[15]RUNDQUIST B C. The Influence of Canopy Green Vegetation Fraction on Spectral Measurements over Native Tallgrass Prairie[J]. Remote Sensing of Environment, 2002, 81(1): 129-135.
[16]宋 怡,马明国.基于SPOT VEGETATION数据的中国西北植被覆盖变化分析[J].中国沙漠,2007,27(1):89-93.

基金

国家重点研发计划项目(20017YFB0504203);福建省高校产学合作项目(2017Y4010);中央引导地方科技发展专项(2017L3012)

PDF(4990 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map