农作废弃秸秆加筋黄土的剪切特性

薛中飞, 王琳, 郑文杰

raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (4) : 180-186.

PDF(7718 KB)
PDF(7718 KB)
raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (4) : 180-186. DOI: 10.11988/ckyyb.20191218
第十届全国青年岩土力学与工程会议专栏

农作废弃秸秆加筋黄土的剪切特性

  • 薛中飞1,2, 王琳1,2, 郑文杰1,2
作者信息 +

Shearing Behavior of Loess Reinforced with Post-harvest Straw

  • XUE Zhong-fei1,2, WANG Lin1,2, ZHENG Wen-chieh1,2
Author information +
文章历史 +

摘要

在中国黄土高原,黄土和秸秆等农作废弃物最为常见。黄土-秸秆混合料几十年来被广泛应用于冻融循环下使用的民用住宅建筑,但少有文献讨论这种混合料的剪切行为,关于其剪切行为的共识还没有达成。通过一系列大型直剪试验,研究了农作废弃秸秆加筋黄土混合料的抗剪性能,探讨了提高抗剪强度参数的机理。制备试样前,先用热水煮沸法软化秸秆,然后与黄土混合,分别以14%,18%,22%的含水率制备方形试件。大型直剪试验结果表明:①加入到试样中的秸秆阻碍了颗粒的重新排列,导致颗粒间的互锁效应,从而抑制剪切面附近剪切带的发展,增大了摩擦角;②考虑到试样的均匀性和试验的可靠性,秸秆的最优掺量介于0.55%~0.65%;③在剪切盒前后观察到的竖向位移可用于解释应变硬化曲线(持续发展)、应变硬化曲线(小位移斜率和大位移斜率阶段持续发展)逐渐增加的现象。

Abstract

Post-harvest Straw(termed PHS hereafter) and loess are easily accessible in Chinese Loess Plateau. The loess-PHS mixture has been widely applied to the construction of residential houses that have been utilised over decades under freeze-thaw cycles. Notwithstanding that, the shearing behavior of such a mixture has rarely been discussed by published literatures. Thus,a consensus about its shearing behavior has not been reached yet. In this study,the shearing behavior of loess-PHS mixture is investigated using a series of large-scale direct shear(LSDS) tests and the mechanism of improving the shear strength parameters of loess-PHS mixture is analyzed as well. The PHS is firstly treated with hot water and then blended with loess for preparing cubic specimens with moisture content of 14%,18%,and 22%,respectively. The LSDS test results demonstrate that:(1) the PHS added into specimen impedes particle rearrangement and results in particle inter-locking,thereby restraining the development of shear bands in the adjacent of shear plane and leading to an improvement of friction angle;(2) the optimal dosage of PHS is deemed as 0.55%-0.65% considering specimen homogenisation and testing reliability;(3) the vertical displacement observed before and after the shear box can be used to explain the gradual increase of the strain-hardening curve(continuous development) and the strain-hardening curve(two stages of continuous development).

关键词

加筋黄土 / 农作废弃秸秆 / 直剪试验 / 抗剪强度 / 最优掺量 / 黄土高原

Key words

reinforced loess / post-harvest straw / direct shear test / shear strength / optimal dosage / Chinese Loess Plateau

引用本文

导出引用
薛中飞, 王琳, 郑文杰. 农作废弃秸秆加筋黄土的剪切特性[J]. raybet体育在线 院报. 2020, 37(4): 180-186 https://doi.org/10.11988/ckyyb.20191218
XUE Zhong-fei, WANG Lin, ZHENG Wen-chieh. Shearing Behavior of Loess Reinforced with Post-harvest Straw[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(4): 180-186 https://doi.org/10.11988/ckyyb.20191218
中图分类号: TU444   

参考文献

[1] VIDAL H. The Principal of Reinforced Earth (Highway Research Record 282)[R]. Washington D C: Highway Research Board, National Research Council, 1969.
[2] 马 强,邢文文,李丽华,等.竹条加筋土的大尺寸直剪试验研究[J].raybet体育在线 院报,2017,34(2): 69-74.
[3] 李陈财,璩继立,刘宝石.麦秸秆形状对上海粘土强度影响的试验研究[J].地下空间与工程学报,2015,11(6):1408-1413.
[4] 王德银,唐朝生,李 建, 等.纤维加筋非饱和黏性土的剪切强度特性[J].岩土工程学报,2013,35(10): 1933-1940.
[5] MAKKAR F M, CHANDRAKARAN S, SANKAR N. Experimental Investigation of Response of Different Granular Soil-3D Geogrid Interfaces Using Large-Scale Direct Shear Tests[J]. Journal of Materials in Civil Engineering, 2019,31(4):04019012.
[6] 周 成,路永珍,黄月华.香根草加固不同含水率膨胀土的侧限膨胀和直剪试验[J].岩土工程学报,2016,38(增刊2): 30-35.
[7] SALAH S,SHADI S N,FADI F. Shear Strength of Fiber-Reinforced Sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 30(8): 490-499.
[8] 杨果林.现代加筋土技术应用与研究进展[J].力学与实践,2002,24(1):9-17.
[9] 刘开富,许家培,周青松,等.土工格栅-土体界面特性大型直剪试验研究[J].岩土工程学报,2019,41(增刊1): 185-188.
[10]郑娇娇,柴寿喜,魏 丽, 等.麦秸秆加筋盐渍土的筋土界面综合抗剪强度试验[J].工程勘察,2015,43(10):11-19.
[11]王家全,武 标,邹 红, 等.土工格栅与粗粒土界面特性的大型直剪试验研究[J].广西科技大学学报,2015,26(3):78-83.
[12]王家全,周 健,黄柳云, 等.土工合成材料大型直剪界面作用宏细观研究[J].岩土工程学报,2013,35(5):908-915.
[13]WEI Hou-zhen, ZHAO Tao, MENG Qing-shan, et al. Experimental Evaluation of the Shear Behavior of Fiber-Reinforced Calcareous Sands[J]. International Journal of Geomechanics, 2018, 18(12): 04018175.
[14]BAREITHER C A, BENSON C H, EDIL T B. Comparison of Shear Strength of Sand Backfills Measured in Small-scale and Large-scale Direct Shear Tests[J]. Canadian Geotechnical Journal, 2008, 45(9): 1224-1236.
[15]GB/T 50123—2019,土工试验方法标准[S]. 北京:中国计划出版社,2019.
[16]李广信,张丙印,于玉贞.土力学[M]. 北京:清华大学出版社,2013:170.
[17]LIU S H, SIMULATING A. Direct Shear Box Test by DEM[J]. Canadian Geotechnical Journal, 2006, 43(2): 155-168.
[18]CUI L, O'SULLIVAN C. Exploring the Macro- and Microscale Response of an Idealized Granular Material in the Direct Shear Apparatus[J]. Geotechnique, 2006, 56(7): 455-468.
[19]CHENG W C, NI C J, ARULRAJAH A, et al. A Simple Approach for Characterising Tunnel Bore Conditions Based upon Pipe-Jacking Data[J]. Tunnelling and Underground Space Technology, 2018, 71: 494-504.
[20]CHENG W C, WANG L, XUE Z F, et al. Lubrication Performance of Pipejacking in Alluvial Deposits[J]. Tunnelling and Underground Space Technology, 2019, 91: 1-10.
[21]CHENG W C, XUE Z F, WANG L, et al. Using Post-harvest Waste to Improve Shearing Behaviour of Loess and Its Validation by Multiscale Direct Shear Tests[J]. Applied Science, 2019, 9(23):5206.

PDF(7718 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map