武汉地区长江一级阶地是典型的二元结构地层,承压水与长江和汉江贯通,地下水位的变化极易对该区域的基坑工程造成危害,尤其是当基坑地连墙存在渗漏点时。假设承压水位上升导致渗漏点出现渗水或流砂,渗漏点逐渐增大甚至会威胁地连墙稳定,或导致墙外地表下沉。以武汉地区某临江基坑为原型,采用离心模型试验,针对地下水位升高引起地连墙薄弱点出现渗透的问题,研究基坑的变形和稳定性。试验结果表明,当基坑地连墙上部预设薄弱点且承压水位超过地连墙薄弱点时出现渗漏破坏,造成的地连墙外侧地基沉降明显增大,且影响范围大,这与基坑开挖引起的变形规律显著不同。研究成果为武汉地区长江一级阶地受承压水位影响的基坑工程设计和施工提供参考。
Abstract
In the first-level terrace of the Yangtze River in Wuhan which is featured with typical dual-structure strata where the confined groundwater is connected with the Yangtze River and the Hanjiang River, the fluctuation of groundwater level would jeopardize foundation pit excavation, particularly when there is leakage point on the diaphragm wall. Assume that water or sand penetration is induced by groundwater level rising, the expansion of leakage point would threaten the stability of diaphragm wall or even give rise to ground settlement outside the wall. With a foundation pit excavation in Hankou, Wuhan, as a case study, we investigated the deformation and stability of foundation pit in the presence of leakage caused by groundwater level rising via centrifugal model test. In the presence of a weak point, when confined groundwater level rose above the leakage point, water and sand gradually penetrated, which further led to more significant settlement of the ground surface outside of the wall in a large scope. Such deformation differs from that induced by excavation. The research finding offers reference for the design and construction of foundation pits in the first-level terrace of the Yangtze River in Wuhan.
关键词
基坑 /
渗漏 /
地下连续墙 /
沉降 /
离心模型试验 /
长江一级阶地 /
武汉地区
Key words
foundation pit /
leakage /
diaphragm wall /
settlement /
centrifugal model test /
the first-level terrace of Yangtz River /
Wuhan
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] TERZAGHI K. Theoretical Soil Mechanics. New York: Wiley, 1943.
[2] 龚晓南, 张 杰. 承压水降压引起的上覆土层沉降分析. 岩土工程学报,2011,33(1):145-149.
[3] 范士凯, 杨育文. 长江一级阶地基坑地下水控制方法和实践. 岩土工程学报,2010, 32(增刊1):63-68.
[4] 徐光黎, 徐光大, 范士凯, 等. 地下水位变动对地下工程的危害分析. 工程勘察, 2015, 43(1):41-44, 58.
[5] 徐杨青, 朱小敏. 长江中下游一级阶地地层结构特征及深基坑变形破坏模式分析. 岩土工程学报,2006,28(增刊2):1794-1798.
[6] 王新泉, 崔允亮, 张世民,等. 长江漫滩高承压水地基地连墙承载特性现场试验研究. 岩石力学与工程学报, 2017, 36(3):773-780.
[7] 张家发,范士凯,陶宏亮,等. 建筑基坑防渗墙渗流控制效果研究. raybet体育在线
院报,2016,33(6):58-64.
[8] 冯晓腊, 蔡娇娇, 熊宗海,等. 落底式止水帷幕条件下深基坑群井试验研究. 水文地质工程地质, 2016, 43(6):107-112.
[9] 梁发云, 褚 峰, 宋 著,等. 紧邻地铁枢纽深基坑变形特性离心模型试验研究. 岩土力学, 2012, 33(3):657-664.
[10] 张 飞, 李镜培, 杨 博,等. 黏性隔水层基坑突涌机制的离心模型试验. 岩石力学与工程学报, 2013, 32(3):598-604.
[11] 马险峰, 张海华, 朱卫杰, 等. 软土地区超深基坑变形特性离心模型试验研究. 岩土工程学报, 2009, 31(9):1371-1377.
[12] 李 波, 程永辉, 程展林. 围堰防渗墙与复合土工膜联接型式离心模型试验研究. 岩土工程学报, 2012,34(11): 2081-2086.
[13] 胡 勇,李云安,李 波,等. 承压水位变动下深大基坑空间效应离心试验与数值模拟.岩土力学,2018, 39(6):1999-2007.
基金
国家自然科学基金项目(51308067);中央级公益性科研院所基本科研业务费项目(CKSF2017012/YT);浙江省公益技术研究计划项目(LGF18E080004);湖州市公益性应用研究项目(2016GY19);广西重点实验室系统性研究项目(2016ZDK011,2014ZDK0010)