崩岗是我国南方地区常见的自然灾害,但目前关于崩岗的研究大多是从定性上分析,鲜少有研究从定量上评估、预测其风险性。以桂东南区域作为研究区,利用RS与GIS技术,选取高程、坡度、坡向、土壤、地质、土地利用、植被覆盖度7个影响因子作为评价指标,以80%崩岗作为训练样本,采用Logistic模型计算出每个影响因子的权重并建立敏感性预测模型,利用ROC曲线进行模型拟合度评估,20%崩岗作为评价结果验证。结果表明:ROC曲线下的面积AUC值为0.718;地质是崩岗侵蚀的关键因子,其次为高程、坡向;研究区极度、高度、中度敏感面积分别占总面积的10.17%、19.30%、26.49%,敏感性评价结果与实际崩岗的分布趋势基本一致。研究结果表明Logistic模型可应用于区域崩岗的关键影响因子与敏感性评估中。
Abstract
Most researches on collapse gully,a frequent natural disaster in south China,focus on qualitative analysis rather than quantitative risk assessment and prediction. With southeast Guangxi Province as the study area,we established a susceptibility prediction model for collapse gully using Logistics model with 80% of the acquired collapse gully based upon RS and GIS images as training sample. We selected seven indicators inclusive of elevation,slope gradient,aspect,soil,geology,land use,and vegetation coverage,and calculated the weight of each index. Furthermore,we assessed the model’s fitting degree using ROC curve,and took 20% of the total collapse gully for model verification. Results showed that the AUC(area under curve) value of the model was 0.718,implying good prediction accuracy. Geology is the key factor of erosion,followed by elevation and slope aspect. Extremely susceptible,highly susceptible,and moderately susceptible areas accounted for 10.17%,19.30% and 26.49%,respectively of the total area. The zoning map of collapse gully accorded with the actual distribution of collapse. Results demonstrated that Logistic model is applicable to assess the key influencing factors and susceptibility of regional collapse gully.
关键词
崩岗 /
Logistic模型 /
影响因子 /
敏感性 /
桂东南区域
Key words
collapse gully /
Logistic model /
influence factors /
susceptibility /
southeast Guangxi Province
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王礼先,孙保平,余新晓,等.中国水利百科全书:水土保持分册.北京:中国水利水电出版社,2004:48-49.
[2] 冯明汉,廖纯艳,李双喜,等.我国南方崩岗侵蚀现状调查.人民长江,2009,40(8):66-68,75.
[3] 曾昭璇.地理学原理:第一册.广州:华南师范大学出版社,1960:64.
[4] 邱锦安,刘希林.基于知识图谱的中国崩岗研究现状及综合分析.中国水土保持科学,2017,15(3):139-148.
[5] 杜 军,杨青华,严 嘉,等. 基于GIS与信息量模型的汶川次生地质灾害危险性评价. 地球科学(中国地质大学学报),2010,35(2):324-330.
[6] 牛全福, 程维明, 兰恒星, 等. 基于信息量模型的玉树地震次生地质灾害危险性评价. 山地学报, 2011,29(2):243-249.
[7] DAI F C, LEE C F. Landslide Characteristics and Slope Instability Modeling Using GIS, Lantau Island, Hong Kong. Geomorphology, 2002, 42(3/4): 213-228.
[8] 何瑞翔, 林齐根, 王 瑛, 等. 云南省地质灾害影响因素及高危险区分析. 灾害学, 2015(3): 208-213.
[9] 陶 舒,胡德勇,赵文吉,等. 基于信息量与逻辑回归模型的次生滑坡灾害敏感性评价:以汶川县北部为例. 地理研究,2010,29(9):1594-1605.
[10] 王 瑛,林齐根,史培军.中国地质灾害伤亡事件的空间格局及影响因素.地理学报,2017,72(5):906-917.
[11] LEE S, RYU J H, LEE M J, et al. Use of an Artificial Neural Network for Analysis of the Susceptibility to Landslides at Boun, Korea. Environmental Geology, 2003, 44(7): 820-833
[12] 汪 洋,殷坤龙,安关峰.滑坡敏感因子的灰色关联分析.岩土力学,2004,25(1):91-93.
[13] 王卫东,陈燕平,钟 晟.应用CF和Logistic回归模型编制滑坡危险性区划图.中南大学学报(自然科学版),2009,40(4):1127-1132.
[14] 伍宇明,兰恒星,高 星,等.一种基于贝叶斯理论的区域斜坡稳定性评价模型.工程地质学报,2014,22(6):1227-1233.
[15] 刘希林,连海清.崩岗侵蚀地貌分布的海拔高程与坡向选择性.水土保持通报,2011,31(4):32-36,41.
[16] 庄建琦, 崔 鹏, 葛永刚, 等. 5.12 汶川地震崩塌滑坡分布特征及影响因子评价:以都江堰至汶川公路沿线为例. 地质科技情报, 2009, 28(2): 16-22.
[17] 许 冲,戴福初,姚 鑫,等.GIS支持下基于层次分析法的汶川地震区滑坡易发性评价.岩石力学与工程学报,2009,28(增刊2):3978-3985.
基金
国家自然科学基金项目(41661043);广西自然科学基金项目(2015GXNSFAA139234);广西科技重点研发计划项目(AB16380318))