现有非极限被动土压力理论大多是基于墙背铅直的情况而得到的,公式的适用范围有限,并且在推导过程中也忽略了土层间剪应力的作用。针对平动模式下墙背倾斜的刚性挡土墙,在已有理论基础上,进一步考虑土层间剪应力的作用,基于水平层分析法,推导了非极限被动土压力的理论公式,扩大了公式的适用范围。研究结果表明:与不考虑剪应力的理论成果相比,本文解与试验值更加吻合,从而验证了公式的可靠性;是否考虑土层间剪应力并不影响土压力合力,但影响土压力的分布,且在墙体上部土压力大于未考虑剪应力的分布解,下部则相反;非极限被动土压力和土层间平均剪应力均随着墙体位移比、填土内摩擦角、填土外摩擦角的增大而增大;随着墙背倾角的增大,土压力强度在墙体上半部分几乎无变化,下半部分减小较为明显;土层间平均剪应力在墙体上部分减小,墙底处增大。同时考虑土拱效应与剪应力的合力作用点位置高于仅考虑土拱效应的解,而低于库伦解。研究结果可为挡土墙设计提供参考。
Abstract
Current theories of calculating non-limit passive earth pressure is mostly based on the assumption that the back of the wall is vertical, which limits the applicable range of formulae and also neglects the effect of shear stress between soil layers during derivation. In this paper, a formula for the non-limit passive earth pressure of retaining walls with inclined rigid wall under translation mode is presented in consideration of the shear stress between soil layers based on horizontal layer analysis. Compared with the theoretical results not considering shear stress, the solution of the presented formula agrees well with experimental values, thus verifying the rationality of the formula. Whether or not to consider the shear stress between soil layers does not affect the resultant force of earth pressure, but affects the distribution of earth pressure. The earth pressure in the upper part of the wall is larger than the solution without considering the shear stress, while in the lower part smaller. Both the non-limit state passive earth pressure and the average shear stress between soil layers increase with the increase of the wall displacement ratio, the internal friction angle of backfill, and the friction angle of wall and soil. As the inclination of the wall increases, the earth pressure intensity hardly changes in the upper part of the wall, but changes apparently in the lower part. The average shear stress between soil layers decreases partially on the wall and increases at the bottom of the wall. The position of the resultant force point considering simultaneously the soil arching and shear stress is higher than the solution considering only the soil arching effect, but lower than the Coulomb solution.
关键词
挡土墙 /
非极限被动土压力 /
土层间剪应力 /
水平层分析法 /
土拱效应 /
库伦解
Key words
retaining wall /
non-limit state passive earth pressure /
shear stress among soil layers /
horizontal layer analysis /
soil arch /
Coulomb solution
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] FANG Y S, ISHIBASHI L. Static Earth Pressures with Various Wall Movements[J]. Journal of Geotechnical Engineering, 1986, 112(3): 317-333.
[2] FANG Y S, CHEN T J, WU B F. Passive Earth Pressures with Various Wall Movements[J]. Journal of Geotechnical Engineering, 1994, 120(8): 1307-1323.
[3] 陆培毅, 严 驰, 顾晓鲁. 砂土基于室内模型试验土压力分布形式的研究[J]. 土木工程学报, 2003, 36(10): 84-88.
[4] 徐日庆,陈页开,杨仲轩,等.刚性挡墙被动土压力模型试验研究[J].岩土工程学报,2002,24(5):569-575.
[5] 王元战, 黄长虹. 关于挡土墙主动土压力计算问题[J]. 港工技术, 2003, 40(2): 22-27.
[6] 王元战, 李珊珊, 李新国. 挡土墙被动土压力分布与被动侧压力系数[J]. 中国港湾建设, 2006, 26(4):9-12.
[7] 李昕睿, 徐日庆. 考虑曲线滑裂面的非极限被动土压力计算[J]. 地下空间与工程学报,2013,9(6):1341-1345.
[8] 谢 涛, 罗 强, 张 良, 等. 基于Rankine模型的墙体位移-土压力近似计算[J].岩石力学与工程学报, 2017, 36(5): 1279-1288.
[9] TERZAGHI B K. Theoretical Soil Mechanics[M]. New York:Wiley,1959.
[10]KINGSLEY H W. Arching in Soil Arching [J]. Journal of Geotechnical Engineering,1989,115(3): 415-419.
[11]李永刚. 挡土墙被动土压力研究[J]. 岩土力学, 2003, 24(2): 273-276.
[12]彭述权, 周 健, 樊 玲, 等. 考虑土拱效应刚性挡墙土压力研究[J]. 岩土力学, 2008, 29(10):2701-2707.
[13]张琪昌, 李 栋. 一种求解短型挡土墙主动土压力的解析方法[J]. 土木工程学报, 2015, 48(3): 79-84.
[14]PAIK K H, SALGADO R. Estimation of Active Earth Pressure against Rigid Retaining Walls Considering Arching Effects[J]. Géotechnique, 2003, 53: 643-653.
[15]卢坤林, 朱大勇, 杨 扬. 考虑位移影响及土拱效应的土压力研究[J]. 工业建筑, 2011, 41(5): 88-92.
[16]周亦涛, 孙文君, 王学民, 等.考虑土拱效应和平移的刚性挡土墙被动土压力[J]. 兰州理工大学学报, 2016, 42(1): 119-123.
[17]陈奕柏, 柯才桐, 高洪波, 等. 考虑变位影响的刚性挡墙非极限土压力研究[J].岩石力学与工程学报, 2015, 34(5):1060-1070.
[18]朱建明, 赵 琦. 考虑土拱效应的挡土墙主动土压力与被动土压力统一解[J]. 岩土力学, 2014, 35(9): 2501-2505.
[19]刘忠玉. 有限无黏性填土刚性挡土墙主动土压力计算[J].中国公路学报, 2018, 31(2):154-164.
基金
四川省科技厅重点项目(2018GZ0499); 四川省教育厅重大培育项目(14CZ0013)