丙三醇水溶液对粉质黏土渗透性的影响

潘雪瑛, 张芹, 蒋仕清, 马慧龙, 于明波

raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (10) : 137-141.

PDF(3685 KB)
PDF(3685 KB)
raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (10) : 137-141. DOI: 10.11988/ckyyb.2019068341
岩土工程

丙三醇水溶液对粉质黏土渗透性的影响

  • 潘雪瑛1,2, 张芹1, 蒋仕清2, 马慧龙1, 于明波2
作者信息 +

Effect of Glycerol-Water Solution on Permeability of Silty Clay

  • PAN Xue-ying1,2, ZHANG Qin1, JIANG Shi-qing2, MA Hui-long1, YU Ming-bo2
Author information +
文章历史 +

摘要

黏性土的低渗透性使其在工程中常用来阻滞污染物的迁移,但有机溶剂会显著增加黏性土的渗透性,从而使屏障作用失效。为了研究有机溶液的介电常数和黏度对渗透性的影响,以粉质黏土为对象,开展不同质量分数丙三醇水溶液的界限含水率和渗透试验。试验结果表明,随着丙三醇水溶液质量分数增加,液限和塑限增大,而渗透系数先增加后减小;土体的渗透性与微观孔隙结构分布和流体特性有关,当丙三醇水溶液质量分数<40%时渗透性受土体组构控制,质量分数超过40%后渗透性受黏度控制;此外,土体的固有渗透率随着质量分数的增加先升高后降低,黏度增加导致了固有渗透率的降低。研究成果表明对于水溶性有机溶剂,需要考虑黏度变化对渗透性的影响。

Abstract

Clay is often used to block the migration of pollutants on account of its low permeability. However, the organic solvents can significantly increase the permeability of clay which will result in the failure of barrier. In order to study the effects of dielectric constant and viscosity of organic solution on the permeability of clay, we carried out tests on the consistency limits and permeability of silty clay with different mass fractions of glycerol-water solutions. Results unveil that with the increase of mass fraction of glycerol-water solutions, the liquid limit and plastic limit of silty clay both increase while the hydraulic conductivity increases first and then decreases. Soil permeability is related to microstructure distribution and fluid properties. If the mass fraction is smaller than 40%, permeability is controlled by fabric; when mass fraction is over 40%, the increase of viscosity leads to the decrease of permeability. In addition, the intrinsic permeability increases in the beginning and then declines with the growth of mass fraction owing to the increment of viscosity. For water-soluble organic solvents, the impacts of viscosity on permeability should be considered.

关键词

粉质黏土 / 丙三醇水溶液 / 界限含水率 / 渗透系数 / 介电常数 / 黏度

Key words

silty clay / glycerol-water solution / limit moisture content / hydraulic conductivity / dielectric constant / viscosity

引用本文

导出引用
潘雪瑛, 张芹, 蒋仕清, 马慧龙, 于明波. 丙三醇水溶液对粉质黏土渗透性的影响[J]. raybet体育在线 院报. 2020, 37(10): 137-141 https://doi.org/10.11988/ckyyb.2019068341
PAN Xue-ying, ZHANG Qin, JIANG Shi-qing, MA Hui-long, YU Ming-bo. Effect of Glycerol-Water Solution on Permeability of Silty Clay[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(10): 137-141 https://doi.org/10.11988/ckyyb.2019068341
中图分类号: TU411   

参考文献

[1] 崔俊芳,郑西来,林国庆.地下水有机污染处理的渗透性反应墙技术[J].水科学进展,2003,14(3):363-367.
[2] 蒋海涛,周恭明,高廷耀.城市垃圾填埋场渗滤液的水质特性[J].环境保护科学,2002,28(3):11-13.
[3] 杨志泉,周少奇.广州大田山垃圾填埋场渗滤液有害成分的检测分析[J].化工学报,2005,56(11):2183-2188.
[4] 陈云敏.环境土工基本理论及工程应用[J].岩土工程学报, 2014,36(1):1-46.
[5] 何 俊,肖衡林,孔祥怡.模拟渗滤液和压力对压实黏土衬垫渗透性影响的试验研究[J].raybet体育在线 院报,2012, 29(2):37-40,59.
[6] SRIDHARAN A. Engineering Behaviour of Clays: Influence of Mineralogy[G]//Chemo-mechanical Coupling in Clays: From Nano-scale to Engineering Applications. Lisse: Swets and Zeitlinger, 2002: 3-28.
[7] GOODARZI A R, FATEH S N, SHEKARY H. Impact of Organic Pollutants on the Macro and Microstructure Responses of Na-bentonite[J]. Applied Clay Science, 2016, 121: 17-28.
[8] 何 俊,王 宇,万 娟.溶液作用下黏土的界限含水率及渗透试验[J].地下空间与工程学报,2013,9(6):1277-1282.
[9] 张 芹,颜荣涛,韦昌富,等.孔隙溶液对粉质黏土界限含水率的影响[J].岩土力学,2015,36(增刊1):558-562.
[10]MESRI G, OLSON R E. Mechanisms Controlling the Permeability of Clays[J]. Clays & Clay Minerals, 1971, 19(3):151-158.
[11]HAMIDON A B, ALI F H. Organic Leachate Effects on Permeability of Compacted Kaolinite[J]. Soils and Foundations, 1989, 29(2): 15-23.
[12]UPPOT J O, STEPHENSON R W. Permeability of Clays under Organic Permeants[J]. Journal of Geotechnical Engineering, 1989, 115(1): 115-131.
[13]边汉亮,蔡国军,刘松玉,等.有机氯农药污染土强度特性及微观机理分析研究[J].地下空间与工程学报,2014, 10(6): 1317-1323.
[14]FERNANDEZ F, QUIGLEY R M. Viscosity and Dielectric Constant Controls on the Hydraulic Conductivity of Clayey Soils Permeated with Water-soluble Organics[J]. Canadian Geotechnical Journal, 1988, 25(3): 582-589.
[15]SEGUR J B, OBERSTAR H E. Viscosity of Glycerol and Its Aqueous Solutions[J]. Industrial & Engineering Chemistry, 1951, 43(9): 2117-2120.
[16]RATNAWEERA P, MEEGODA J N. Shear Strength and Stress-Strain Behavior of Contaminated Soils[J]. Geotechnical Testing Journal, 2005, 29(2): 133-140.
[17]ESTABRAGH A R,BEYTOLAHPOUR I,MORADI M,et al. Mechanical Behavior of a Clay Soil Contaminated with Glycerol and Ethanol[J]. European Journal of Environmental and Civil Engineering,2016,20(5):503-519.
[18]SL237—1999,土工试验规程[S]. 北京:中国水利水电出版社, 1999.
[19]AKERLOF G. Dielectric Constants of Some Organic Solvent-Water Mixtures at Various Temperatures[J]. Journal of the American Chemical Society, 1932, 54(11): 4125-4139.
[20]SRIDHARAN A, PRAKASH K. Mechanisms Controlling the Undrained Shear Strength Behaviour of Clays[J]. Canadian Geotechnical Journal, 1999, 36(36):1030-1038.
[21]郭 莹,王 琦.落锥法确定粉土液限和塑限的试验研究[J].岩土力学,2009,30(9):2569-2574.
[22]BUDHU M, GIESE R F, CAMPBELL G,et al. The Permeability of Soils with Organic Fluids[J]. Canadian Geotechnical Journal, 1991, 28(1): 140-147.
[23]KAYA A, FANG H Y. Experimental Evidence of Reduction in Attractive and Repulsive Forces between Clay Particles Permeated with Organic Liquids[J]. Canadian Geotechnical Journal, 2005, 42(2): 632-640.
[24]杨德欢,颜荣涛,韦昌富,等.粉质黏土强度指标的水化学敏感性研究[J].岩土力学,2016,37(12):3529-3536.
[25]MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. New York: John Wiley & Sons, 2005.
[26]MONTORO M A, FRANCISCA F M. Soil Permeability Controlled by Particle-Fluid Interaction[J]. Geotechnical and Geological Engineering, 2010, 28(6): 851-864.

基金

国家自然科学基金项目(11372078,11562007,41572293);广西建筑新能源与节能重点实验室资助项目(桂科能16-J-21-11)

PDF(3685 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map