为研究固化淤泥土经过冻融循环后的力学性质变化及其劣化机理,通过无侧限抗压强度试验、直剪试验、固结试验等土力学试验对其形变特征、内摩擦角、黏聚力以及压缩特性的变化进行分析。结果表明:固化淤泥土随着冻融循环次数的增加,其无侧限抗压强度、内摩擦角、黏聚力以及压缩屈服压力等重要力学指标均出现减小的现象;6次冻融循环后,固化淤泥土达到承受极限,在此之后试样的各项力学指标将发生突变,破坏类型变为脆性破坏。研究成果可为固化淤泥土冻融循环劣化防治措施的制定提供科学的思路。
Abstract
To study the mechanical properties and degradation mechanism of solidified silt undergone cyclic freezing and thawing,we analyzed the changes in deformation feature, internal friction angle, cohesive force, and compression features of solidified silt via unconfined compressive strength test, direct shear test and consolidation test. Results demonstrated that with the proceeding of cyclic freezing and thawing, the unconfined compressive strength, internal friction angle, cohesion, and compression yield pressure of solidified silt all degraded. After six cycles, the mechanical indexes of solidified silt reached a critical status and changed abruptly towards brittle failure. The research finding could offer scientific idea for preventing and controlling the degradation of solidified silt.
关键词
固化淤泥土 /
冻融循环 /
形变特征 /
无侧限抗压强度 /
抗剪强度
Key words
solidified silt /
freeze-thaw cycle /
deformation feature /
unconfined compressive strength /
shear strength
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] XU Y, ZHANG C, ZHAO M, et al. Comparison of Bioleaching and Electrokinetic Remediation Processes for Removal of Heavy Metals from Wastewater Treatment Sludge. Chemosphere, 2017, 168: 1152-1157.
[2] 张 华, 赵由才, 黄仁华, 等. 不同性质污泥在模拟填埋场中的稳定化进程研究. 环境科学学报, 2009, 29(10): 2103-2109.
[3] 冯 源, 罗小勇, 林伟岸, 等. 处置库污泥工程特性测试研究. 岩土力学, 2013, 34(1): 115-122.
[4] NORIHIKO M, SUKSUN H, NAGARAJ T S. Engineering Behavior of Cement Stabilized Clay at High Water Content. Soils and Foundations, 2001, 41(5): 33-45.
[5] 王建华, 高玉琴. 干湿循环过程导致水泥改良土强度衰减机理研究. 中国铁道科学, 2006, 27(5): 23-27.
[6] 赵明龙, 王建华, 梁爱华. 干湿循环对水泥改良土疲劳强度影响的试验研究. 中国铁道科学, 2005, 26(2): 25-28.
[7] WANG D X,ABRIAK N E,ZENTAR R. Strength and Deformation Properties of Dunkirk Marine Sediments Solidified with Cement, Lime and Fly Ash.Engineering Geology, 2013, 166:90-99.
[8] MYMRIN V,STELLA J C,SCREMIN C B, et al. Utilization of Sediments Dredged from Marine Ports as a Principal Component of Composite Material. Journal of Cleaner Production,2017, 142: 4041-4049.
[9] WANG L,TSANG D C W, POON C S. Green Remediation and Recycling of Contaminated Sediment by Waste-incorporated Stabilization/solidification. Chemosphere, 2015, 122: 257-264.
[10] MESSINA F,FERONE C,MOLINO A, et al. Synergistic Recycling of Calcined Clayey Sediments and Water Potabilization Sludge as Geopolymer Precursors: Upscaling from Binders to Precast Paving Cement-free Bricks.Construction and Building Materials, 2017, 133: 14-26.
[11] WANG L,KWORK J S H,TSANG D C W, et al. Mixture Design and Treatment Methods for Recycling Contaminated Sediment. Journal of Hazardous Materials, 2015, 283: 623-632.
[12] PODGORNEY R K,BENNETT J E.Evaluating the Long-term Performance of Geosynthetic Clay Liners Exposed to Freeze-Thaw. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(2): 261-265.
[13] CHAMBERLAIN E J, GOW A J. Effect of Freezing and Thawing on the Permeability and Structure of Soils. Engineering Geology, 1979, 13(4): 73-92.
[14] SHIHATA S A, BAGHDADI Z A.Simplified Method to Assess Freeze-Thaw Durability of Soil Cement.Journal of Materials in Civil Engineering,2001,13(4):243-247.
[15] 齐吉琳, 马 巍. 冻融作用对超固结土强度的影响.岩土工程学报, 2006, 28(12): 2082-2086.
[16] 郑 郧, 马 巍, 邴 慧.冻融循环对土结构性影响的机理与定量研究方法. 冰川冻土, 2015, 37(1): 132-137.
[17] 陆 萍. 淤泥常温固化及其力学性能研究. 扬州:扬州大学, 2016.
[18] 童丽萍, 雷小娟. 黄河淤泥烧结多孔砖抗冻性能研究. 新型建筑材料, 2008(10): 23-26.
[19] 陈敬虞, FREDLUND D G. 非饱和土抗剪强度理论的研究进展. 岩土力学, 2003,24(10):655-660.
[20] 龙玉民. 重塑粘性土c、φ值影响因素研究. 长沙:中南大学, 2012.
基金
国家自然科学基金项目(51709154);
湖北省自然科学基金项目(2016CFB237);
三峡大学硕士学位论文培优基金(2018SSPY026)