干湿循环和动载耦合作用会导致煤矿岩石物理力学性质的劣化,引起地下岩体工程结构的破坏,诱发煤矿地下工程地质灾害和工程事故。基于纵波波速变化和Weibull分布统计损伤理论,推导了干湿循环与动载耦合作用下煤矿砂岩的损伤演化方程,探讨了动弹性模量取值方法对损伤演化的影响,发现以动态应力-应变曲线30%与70%峰值应力连线的斜率作为动弹性模量更能反映出本次试验砂岩的损伤演化规律。在此基础上,分析了干湿循环次数对总损伤变量和总损伤率演化的影响,得出干湿循环与动载耦合作用后砂岩的总损伤变量随着干湿循环次数的增加而增大,总损伤率随应变增长先增加后减小;建立了干湿循环和动载耦合作用下砂岩的动态本构模型并对其进行了验证,以期为深部地下岩体工程稳定性分析提供依据。
Abstract
Coupling wetting-drying cycles and dynamic loading deteriorates the physical and mechanical properties of coalmine rock, damages underground structure and even induces geological hazards and accidents in coalmine underground engineering. In the light of longitudinal wave velocity variation and Weibull distribution statistical damage theory, we deduced the damage evolution equation of coalmine sandstone under coupling wetting-drying cycles and dynamic loading, and investigated the damage evolution with the dynamic elastic modulus determined by different methods. We found that the method of determining dynamic elastic modulus as the average slope between 30% and 70% peak stress on dynamic stress-strain curve is more suitable for the damage evolution rule of tested coalmine sandstone. Moreover, we further examined the influence of wetting-drying cycle on total damage variable and total damage ratio, and unveiled that under coupling wetting-drying cycles and dynamic loading, damage variable enlarged with the proceeding of cyclic wetting and drying, while damage ratio increased first and then reduced with the growth of dynamic strain. Finally, we built and validated a dynamic constitutive model for coalmine sandstone under coupling wetting-drying cycles and dynamic loading. The test results are expected to offer basis for the stability analysis in deep underground rock engineering.
关键词
煤矿砂岩 /
干湿循环 /
动载作用 /
动弹性模量 /
损伤演化 /
本构模型
Key words
coalmine sandstone /
wetting-drying cycles /
dynamic loading /
dynamic elastic modulus /
damage evolution /
constitutive model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘新荣,傅 晏,郑颖人,等. 水岩相互作用对岩石劣化的影响研究. 地下空间与工程学报,2012,8(1):77-82.
[2] 王周锋,郝瑞娟,杨红斌,等. 水岩相互作用的研究进展. 水资源与水工程学报,2015,26(3):210-216.
[3] CLARKE D, SMETHURST J A. Effects on Climate Change on Cycles of Wetting and Drying in Engineering Clay Slope in England. Journal of Engineering Geology and Hydrogeology, 2010, 43(4): 473-486.
[4] 李 亚,余宏明,李 科,等. 干湿循环作用下石膏岩劣化效应的试验研究. raybet体育在线
院报,2017,34(3):63-66.
[5] 傅 晏,王子娟,刘新荣,等. 干湿循环作用行下砂岩细观损伤演化及宏观劣化研究. 岩土工程学报,2017,39(9): 1653-1661.
[6] 韩铁林, 师俊平, 陈蕴生. 干湿循环和化学腐蚀共同作用下单裂隙非贯通试样力学特征的试验研究. 水利学报,2016,47(12): 1566-1576.
[7] HUA W, DONG S M, PENG F, et al. Experimental Investigation on the Effect of Wetting-Drying Cycles on Mixed Mode Fracture Toughness of Sandstone. International Journal of Rock Mechanics and Mining Sciences, 2017, 93: 242-249.
[8] 杨仁树. 我国煤矿岩巷安全高效掘进技术现状与展望. 煤炭科学技术,2013,41(9):18-23.
[9] 刘永胜,刘 旺,董新玉. 化学腐蚀作用下岩石的动态性能及本构模型研究. raybet体育在线
院报,2015,32(5):72-75.
[10] 袁 璞,马芹永. 干湿循环条件下煤矿砂岩分离式霍普金森压杆试验研究. 岩土力学,2013,34(9):2557-2562.
[11] ZHOU Z L, CAI X, CHEN H L, et al. Influence of Cyclic Wetting and Drying on Physical and Dynamic Compressive Properties of Sandstone. Engineering Geology, 2017, 220: 1-12.
[12] 刘小红,朱杰兵,曾 平,等. 干湿循环对岸坡粉砂岩劣化作用试验研究. raybet体育在线
院报,2015,32(10):74-77.
[13] 张全胜,杨更社,任建喜. 岩石损伤变量及本构方程的新探讨. 岩石力学与工程学报,2003,22(1):30-34.
[14] 张慧梅,杨更社. 冻融岩石损伤劣化及力学特性试验研究. 煤炭学报,2013,38(10):1756-1762.
[15] 张慧梅,杨更社. 冻融与荷载耦合作用下岩石损伤模型的研究. 岩石力学与工程学报,2010,29(3):471-476.
[16] 吴 政,张承娟. 单向荷载作用下岩石损伤模型及其力学特性研究. 岩石力学与工程学报,1996,15(1):55-61.
[17] GB/T 23561.8—2009,煤和岩石物理力学性质测定方法第8部分:煤和岩石变形参数测定方法. 北京:中国标准出版社,2009.
[18] ASTM D7012-14, Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperature. Pennsylvania, USA: ASTM International, 2014.
基金
中国博士后科学基金项目(2018M642504);
安徽省自然科学基金项目(1808085QE148);
安徽省教育厅科学研究项目资助(KJ2017A097);
安徽省住房城乡建设科学技术计划项目(2017YF-08);
安徽理工大学青年教师科学研究资助项目(QN201607);
安徽理工大学博士基金项目(11674);
国家级大学生创新训练项目(201810361029)