基于GACO-BP-MC的大坝变形监控模型

董丹丹, 祖安君, 孙雪莲

raybet体育在线 院报 ›› 2019, Vol. 36 ›› Issue (7) : 48-54.

PDF(1643 KB)
PDF(1643 KB)
raybet体育在线 院报 ›› 2019, Vol. 36 ›› Issue (7) : 48-54. DOI: 10.11988/ckyyb.20171438
工程安全与灾害防治

基于GACO-BP-MC的大坝变形监控模型

  • 董丹丹1,2, 祖安君1,2, 孙雪莲1,2
作者信息 +

Model of Dam Deformation Monitoring Based on Genetic Ant Colony Optimization and Back Propagation Improved by Markov Chain

  • DONG Dan-dan1,2, ZU An-jun1,2, SUN Xue-lian1,2
Author information +
文章历史 +

摘要

建立相应的安全监控模型来分析大坝变形监测资料对保障大坝服役安全意义重大。BP神经网络模型在此方面得到了广泛应用,但采用蚁群算法(ACO)对BP神经网络参数寻优时存在因初期搜索完全随机导致收敛速度慢的问题。将具有快速随机的全局搜索能力的遗传算法(GA)引入蚁群算法中,利用遗传算法指导生成初始信息素分布,再由蚁群算法正反馈寻得最优解来训练BP神经网络,从而得到大坝变形预测值,2种算法优势互补,缩短了蚁群算法的搜索时间并避免陷入局部最优点。在此基础上,为进一步提高预测精度,采用马尔科夫链(MC)对预测结果进行改进,由此建立了应用于大坝变形监控的GACO-BP-MC模型。工程实例分析表明,该模型在参数优化方面具有较快的寻优速率,且具有较高的拟合和预报能力。

Abstract

Back Propagation (BP) neural network has been widely used to establish monitoring models in analyzing dam deformation data. Nevertheless, when optimizing the BP neural network parameters, Ant Colony Optimization (ACO) algorithm converges slowly in the beginning due to completely random search. In the present study, a dam deformation monitoring model combining genetic ACO, BP, and Markov Chain (MC) is built to tackle this problem. First of all, Genetic Algorithm (GA) which has remarkable ability of global search is introduced to help guide the initial distribution of pheromone, and the optimal solution is obtained by the positive feedback of ACO to train BP neural network to get the predicted values of dam deformation. Since the advantages of the two algorithms are complementary, this improvement greatly reduces the time taken in the initial stage of optimization and avoids falling into the local optimum. Furthermore, to improve the prediction accuracy, MC is employed to correct residual errors of the prediction results. Engineering application case manifests that the model is of good ability of fitting and prediction with fast searching speed in parameter optimization.

关键词

监控模型 / 大坝变形 / 蚁群算法 / BP神经网络 / 遗传算法 / 马尔科夫链 / 预测精度

Key words

monitoring model / dam deformation / ant colony algorithm / BP neural network / genetic algorithm / Markov chain / prediction accuracy

引用本文

导出引用
董丹丹, 祖安君, 孙雪莲. 基于GACO-BP-MC的大坝变形监控模型[J]. raybet体育在线 院报. 2019, 36(7): 48-54 https://doi.org/10.11988/ckyyb.20171438
DONG Dan-dan, ZU An-jun, SUN Xue-lian. Model of Dam Deformation Monitoring Based on Genetic Ant Colony Optimization and Back Propagation Improved by Markov Chain[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(7): 48-54 https://doi.org/10.11988/ckyyb.20171438
中图分类号: TV698.1   

参考文献

[1] 吴中如.水工建筑物安全监控理论及其应用[M].北京:高等教育出版社,2003.
[2] SU Huai-zhi, HU Jiang, WU Zhong-ru. A Study of Safety Evaluation and Early-warning Method for Dam Global Behavior[J]. Structural Health Monitoring, 2012, 11(3): 269-279.
[3] 于 鹏,顾冲时.大坝安全监测的组合预测模型[J].人民黄河,2006,28(1):67-68,72.
[4] 吴中如,陈 波.大坝变形监控模型发展回眸[J].现代测绘,2016,39(5):1-3,8.
[5] 吴云芳,李珍照.改进的BP神经网络模型在大坝安全监测预报中的应用[J].水电站设计,2002,18(2):21-24.
[6] 牛景太,魏博文.基于蚁群优化神经网络的混凝土坝位移安全监控模型[J].甘肃水利水电技术,2012,48(7):39-41.
[7] 陈 旭.基于神经网络的电力系统短期负荷预测研究[D].武汉:华中科技大学,2015.
[8] 龙 浩,高 睿,孔德新,等.基于BP神经网络-马尔科夫链模型的隧道围岩位移预测[J].raybet体育在线 院报,2013,30(3):40-43,55.
[9] 苏怀智,吴中如,温志萍,等.遗传算法在大坝安全监控神经网络预报模型建立中的应用[J].水利学报,2001,32(8):44-48.
[10]江祥奎,汪友明.基于蚁群遗传算法的BP神经网络摄像机标定[J].机械与电子,2013(12):60-62.
[11]刘 澍.基于改进蚁群算法与神经网络的调制识别研究[D].武汉:华中科技大学,2009.
[12]杜传阳,郑东健,张 毅,等.基于动态SVM-MC的大坝变形监测模型及应用[J].水电能源科学,2015,33(1):71-74.

基金

国家重点研发计划课题(2016YFC0401601);国家自然科学基金重点项目(51739003);国家自然科学基金项目(51479054);水文水资源与水利工程科学国家重点实验室开放基金项目(2016491811,2017491811);云南省教育厅科学研究基金项目(2016ZZX109)

PDF(1643 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map