充压伸缩式水封在水利枢纽工程高水头泄水孔中应用日益广泛,但由于多种原因,弧形闸门可能会出现漏水,甚至出现水封及连接件破坏现象。某实际工程在第一汛期底水封压板上的M20不锈钢螺栓大部分旋出冲走;增大压板螺栓直径(由M20改为M27)、提高螺栓等级(由A2-70改为10.9级)后,第二汛期螺栓又出现断裂。以该工程为例,采用物理模型试验方法,并结合相关计算,研究了弧形工作闸门底水封附近的水力特性。分析结果表明水封系统破坏机理的主要原因是高速水流引起的负压、空蚀及流激振动诱发的水封系统共振。通过试验方案优化研究,提出了在门槽斜坡跌坎下游布置消力坎的工程措施。试验结果表明:出口段水流条件得到很大改善,水封处负压消失,水流空化数增大,消能减蚀效果明显。此外,还提出将水封压板与座板的弹性连接结构改为刚性连接结构,使得水封系统的固有频率远离水流脉动压力优势频率分布区,避免水封系统共振。研究结果可为类似的弧形工作闸门水封设计和故障处理提供参考。
Abstract
Pressurized expansive water seal is widely applied to weep holes of high head in water conservancy project. Due to many reasons, radial gate may suffer from leakage or even failure of the water seal and adapting pieces. Taking an actual project for example, most M20 stainless steel bolts on the bottom water clamping plate rotated out and were washed away in the first flood season after operation; in the second flood season, the bolts still fractured even after enlargement of the diameter of bolts (from M20 to M27) and improvement of bolts grade (from A2-70 to 10.9). In view of this, we investigated the hydraulic characteristics in the vicinity of the bottom water seal of the working radial gate via physical model test. Results unveiled that negative pressure and cavitation induced by high-velocity flow and resonance generated by flow-excited vibration are major causes of the failure of water seal system. Furthermore, through scheme optimization, we proposed an engineering countermeasure, which is to arrange baffle sill in the downstream reach near the slope of the gate slot. Test results demonstrated that flow condition in the exit segment has improved remarkably, negative pressure of water seal vanished, and flow cavitation number increased, implying evident energy dissipation and corrosion reduction effects. In addition, we recommend rigid connection instead of elastic connection between the clamping plate and the base plate in order to avoid resonance of the water seal system by keeping the natural frequency of the water seal system far from the dominant area of frequency distribution of fluctuating pressure. The research findings offer reference for the design and fault treatment of water seal system of radial gate.
关键词
弧形闸门 /
充压伸缩式水封 /
负压 /
水流空化数 /
消能减蚀 /
时均压强 /
脉动压强
Key words
radial gate /
pressurized expansive water seal /
negative pressure /
flow cavitation number /
energy dissipation and corrosion mitigation /
time-averaged pressure /
fluctuation pressure
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 钱军祥,魏文炜,邹柏青, 等.构皮滩水电站泄洪中孔弧形闸门充压止水设计.人民长江,2010,41(22):41-43.
[2] 赵清静,李 锋.拉西瓦水电站泄洪底孔事故闸门及门槽设计.西北水电,2010,(2):72-75.
[3] 曹 阳,徐 衡.充压式水封在二滩水电站中的应用.四川水力发电,2008,27(增3):106-108.
[4] 王 雷,莫 非.东风水电站中孔弧形闸门止水装置改造.贵州水力发电,2001,15(2):25-28.
[5] 白绍学,张绍春,李一兵,等. 高水头弧形闸门伸缩式水封止水试验研究.云南水力发电,2009,25(5):15-20.
[6] 吴杰芳,张林让,余 岭,等.闸门流激振动全水弹性模型试验的原型验证.raybet体育在线
院报,2005,(5):62-64.
[7] 汪海潮.葛洲坝二江泄水闸弧形闸门振动研究.raybet体育在线
院报,1993,(3):62-67.
[8] 肖兴斌,王才欢,王业红.弧形闸门突扩跌坎式通气减蚀研究进展综述.raybet体育在线
院报,2000,17(5):1-4,8.
[9] 刘 娟. 伸缩式水封在应用中存在问题及解决方法. 甘肃水利水电技术,2012,48(6): 16-17,20.
[10] 周瑞忠,池 元. 水口电站导流底孔封堵方案中挟气对负压和气蚀的影响. 福州大学学报(自然科学版),1993,(3):73-78.
[11] 杨永森,杨永全. 掺气减蚀设施体型优化研究. 水科学进展,2000, 11(2) :144-147.
[12] 肖兴斌,王业红.弧门突扩跌坎式通气减蚀研究应用综述.中南水力发电,2001, (4):65-69.
[13] 张林让,蒋昱州,曾 平,等.向家坝导流底孔平面封堵闸门流激振动问题研究.raybet体育在线
院报,2011,28(10):186-192.