土工袋挡墙作为一种新型加筋土挡墙,已被广泛应用于水利、交通、建筑等各类工程的支挡结构。针对其工作环境多变的特点,运用岩土工程有限元分析软件GTS(Geotechnical and Tunnel analysis System)研究了土工袋挡墙在不同工况下的变形特性。研究结果表明挡墙坡度、高宽比以及填土表面荷载强度对于土工袋挡墙变形特性具有重要影响:坡度决定了土工袋挡墙的变形形态和变形转折点的位置范围,随着坡度变小,墙顶水平位移迅速减小;高宽比越小,墙面变形量越小,且挡墙坡度越大,减小高宽比对限制墙面弯曲变形的效果越好;填土表面荷载强度越大,墙面弯曲变形越大,墙面变形转折点位置随着填土表面荷载的增大在一定变化范围内逐渐上移。由结果可知,坡度决定挡墙变形形态,而高宽比及填土荷载影响主要墙面变形量。
Abstract
As a new type of reinforced retaining structure, retaining wall constructed with geobags has been widely used in a variety of engineering fields, such as water conservancy, communication and construction, which contributes to complex and varied working conditions. The finite element software GTS is used to study the deformation behavior of retaining wall constructed with geobags under different conditions. The simulation results show that slope gradient, height-width ratio, and surface load have great effects on the deformation behavior. Slope gradient determines the shape of deformation and the location of turning point on deformation curve. When slope gradient decreases, the horizontal displacement at the top of retaining wall shrinks rapidly. Lower height-width ratio results in less deformation, and such effect of the decrease of height-width ratio intensifies when slope gradient gets larger. With the increase of surface load, flexural deformation intensifies and the turning point gradually moves upward within a certain range. In conclusion, the deformation shape of retaining wall is determined by slope gradient, while deformation amount is affected by height-width ratio and surface load.
关键词
土工袋挡墙 /
变形特性 /
有限元 /
坡度 /
高宽比 /
填土表面荷载
Key words
retaining wall constructed with geobags /
deformation behavior /
FEM /
slope gradient /
height-width ratio /
surface load
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 董 鹏, 松岡元, 山本春行. 円形袋詰め補強土(円形土のう)の耐荷応力について[J].土木学会年次学術講演会講演概要集, 2006, 61: 173-178.
[2] 刘斯宏,汪易森. 土工袋加固地基原理及工程应用[J].岩土工程技术, 2007, (5): 221-225.
[3] MATSUOKA H, LIU Si-hong.A New Earth Reinforcement Method Using Soilbags[M].London: A A Balkema Publishers-Taylor & Francis, 2005.
[4] 刘斯宏,樊科伟,陈笑林,等. 土工袋层间摩擦特性试验研究[J].岩土工程学报,2016,38(10):1874-1880.
[5] 刘斯宏,薛向华,樊科伟,等. 土工袋柔性挡墙位移模式及土压力研究[J].岩土工程学报,2014,36(12):2267-2273.
[6] 刘斯宏,李玲君,张雨灼,等. 土工袋挡土墙小型振动台试验[J].河海大学学报(自然科学版), 2015, 43(3): 236-243.
[7] 王艳巧,刘斯宏,杨俊杰,等. 土工袋加固砂性土质边坡模型试验与上限解[J].岩石力学与工程学报,2009, 28(增2):4006-4013.
[8] 文 华,邹娇丽,程谦恭,等. 建渣土工袋挡土墙室内模型试验[J].西南交通大学学报, 2016, 51(6):1087-1097.
[9] TANTONO S F, BAUER E. Numerical Simulation of a Soilbag under Vertical Compression[C] ∥Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG). Goa, India, October 1-6, 2008: 433-439.
[10] 高军军,刘斯宏,王柳江. 竖向荷载下土工袋的有限元数值模拟[J].河海大学学报(自然科学版), 2014, 42(6):524-528.
[11] YOUSEF A, RICHARD M, HARUYUKI Y,et al. Numerical Analysis of Soilbags under Compression and Cyclic Shear[J].Computers and Geotechnics, 2011, 38(5): 659-668.
[12] 李 栋,鲁 洋,樊科伟,等. 土工袋无侧限压缩试验有限元数值模拟[J].水电能源科学,2016,(6):135-139.
[13] 刘斯宏,王柳江,李 卓,等. 土工袋加固软土地基现场荷载试验的数值模拟[J].水利水电科技进展,2012, 32(1): 78-82.
[14] 郑 斌. 连接式土工袋结构性能研究[D] .重庆:重庆大学,2016.
[15] 黄小元. 返包土工袋式加筋土结构性能研究[D] .重庆:重庆大学,2015.
[16] 董景刚. 土与结构接触面力学特性研究[D] .大连:大连理工大学,2011.
[17] 王志亮,殷宗泽,李永池. 邓肯-张模型有限元分析路堤沉降实用方法[J].岩土力学,2005, 26(7): 1085-1089.
[18] 张 铭,戴 磊. 基于邓肯-张E-B模型的边坡稳定性强度折减法的研究及应用[J].公路工程, 2014, 39(6): 5-7, 19.