巷道顶板在水的作用下具有较强的蠕滑特性,对矿井开挖与生产造成巨大威胁。采用YSJ-01-00岩石三轴流变试验机开展巷道顶板砂岩三轴压缩蠕变试验,研究砂岩在不同含水条件下的蠕变力学特性。试验结果表明:①随着饱水时间的增长和应力水平的提高,瞬时应变和蠕变量都呈递增趋势;②随着含水状态的增强,初始蠕变速率和稳态蠕变速率都逐渐增大,稳态蠕变速率与应力水平呈幂函数关系;③对比分析2种不同的长期强度求取方法,天然状态、饱水1 d和饱水5 d条件下砂岩的长期强度分别为其瞬时强度的64.12%,62.08%,59.34%,砂岩在水的作用下长期强度衰减加剧。
Abstract
The roof of roadway in mine has strong creep characteristics under the action of water, posing great threat to mine excavation and production. In this research we investigated the creep mechanical behavior of sandstone in different water-bearing conditions through triaxial rheological compression test. Test results showed that: (1) with the increase of water-saturation time and the climbing of stress level, instantaneous strain and creep both increased. (2) With the enhancement of water-bearing state, the initial creep rate and steady-state creep rate gradually increased, and the steady-state creep rate was in a power function relationship with the stress level.(3) By comparing two different long-term strength methods, we found that the long-term strength of sandstone under conditions of natural state, water-saturated for 1 day, and water-saturated for 5 days was only 64.12%, 62.08% and 59.34% of its instantaneous strength, respectively,and the long-term strength attenuation aggravated under the action of water.
关键词
砂岩 /
蠕变特性 /
饱水 /
蠕变速率 /
长期强度 /
三轴压缩蠕变试验
Key words
sandstone /
creep behavior /
water-saturated /
creep rate /
long-term strength /
triaxial compressive creep test
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王红胜. 沿空巷道窄帮蠕变特性及其稳定性控制技术研究[D]. 徐州:中国矿业大学, 2011.
[2] 赵同彬, 张玉宝, 谭云亮,等. 考虑损伤效应深部锚固巷道蠕变破坏模拟分析[J]. 采矿与安全工程学报, 2014, 31(5):709-715.
[3] PHILLIPSON S E.Texture,Mineralogy,and Rock Strength in Horizontal Stress-related Coal Mine Roof Falls[J].International Journal of Coal Geology,2008,75(3):175-184.
[4] 巨能攀, 黄海峰, 郑 达,等. 考虑含水率的红层泥岩蠕变特性及改进伯格斯模型[J]. 岩土力学, 2016,37(增刊2):67-74.
[5] 刘秀敏, 蒋玄苇, 陈从新,等. 天然与饱水状态下石膏岩蠕变试验研究[J]. 岩土力学, 2017,38(增刊1):277-283.
[6] 李 男, 徐 辉, 胡 斌. 干燥与饱水状态下砂岩的剪切蠕变特性研究[J]. 岩土力学, 2012, 33(2):439-443.
[7] 李高阳. 水对煤岩蠕变力学特性影响的试验研究[D]. 西安:西安科技大学, 2017.
[8] 刘志河, 郑怀昌, 张晓君,等. 浅埋灰石膏矿岩单轴蠕变特性试验研究[J]. 化工矿物与加工, 2016,45(12):24-28.
[9] 付建新, 曹 师, 宋卫东,等. 考虑初始缺陷的超高矿柱蠕变分析及失稳滞后时间研究[J]. 中国矿业大学学报, 2017, 46(2):279-284.
[10]杨彩红, 王永岩, 李剑光,等. 含水率对岩石蠕变规律影响的试验研究[J]. 煤炭学报, 2007, 32(7):695-699.
[11]张春阳, 曹 平, 汪亦显,等. 自然与饱水状态下深部斜长角闪岩蠕变特性[J]. 中南大学学报(自然科学版), 2013, 44(4):1587-1595.
[12]李良权, 徐卫亚, 王 伟,等. 基于流变试验的向家坝砂岩长期强度评价[J]. 工程力学, 2010, 27(11):127-136.
[13]沈明荣, 谌洪菊. 红砂岩长期强度特性的试验研究[J]. 岩土力学, 2011, 32(11):3301-3305.
[14]张强勇, 杨文东, 陈 芳,等. 硬脆性岩石的流变长期强度及细观破裂机制分析研究[J]. 岩土工程学报, 2011, 33(12):1910-1918.
[15]TOMANOVIC Z, MILADINOVIC B, ZIVALJEVIC S. Criteria for Defining the Required Duration of a Creep Test[J]. Canadian Geotechnical Journal, 2014, 52(7): 34-37.
[16]王来贵,黄润秋,王泳嘉,等.岩石力学系统运动稳定性理论及其应用[M]. 北京:地质出版社, 1998:42-45.
基金
内蒙古自治区自然科学基金博士基金项目(2016BS0509);内蒙古自治区自然科学基金项目(2016MS0511)