为了探究高分一号(GF-1)卫星对河流水体水质参数遥感反演的效果,使用GF-1卫星数据的16 m分辨率的GF-1/WFV传感器数据和地面实测数据,基于地面实测光谱反射率数据模拟WFV波段组合,构建水体叶绿素a和总悬浮物浓度遥感模型,从而对钱塘江流域杭州段水体水质参数进行估算。研究结果表明:基于B1-B3差值的二次多项式模型可用于叶绿素a浓度估算(R2=0.83,RMSE=0.74 μg/L),基于B3波段的二次多项式模型可用于总悬浮物浓度的估算(R2=0.92,RMSE=1 mg/L);通过模型应用于准同步的GF-1/WFV数据,较好反映了低潮位钱塘江杭州段水体叶绿素a和总悬浮物浓度的空间分布,为高分一号卫星数据遥感监测钱塘江水色参数做出了有益的探索性工作。研究方法及结果对其他流域河流水色遥感研究具有参考价值。
Abstract
In an attempt to explore the effect of Gaofen-1 (GF-1) satellite on remote sensing inversion of river water quality, the remote sensing estimation models of Chlorophyll-a and total suspended matter concentration were constructed to estimate the water quality in Hangzhou segment of Qiantang River by simulating the WFV bands by in situ spectral reflectance based on the GF-1/WFV data with 16 m resolution and the ground measured data. Results prove that the quadratic polynomial model based on the reflectance difference of B1 and B3 band (B1-B3) can be used to estimate the Chlorophyll-a concentration with R2=0.83 and RMSE=0.74 μg/L; the quadratic polynomial model based on the B3 band reflectance can be used to estimate the total suspended matter concentration with R2=0.92 and RMSE=1 mg/L. The models were applied to quasi-synchronous GF-1/WFV data, which well reflected the spatial distribution of Chlorophyll-a and total suspended matter concentration in the low-tidal Qiantang River. This research is a useful exploratory work to monitor the water color parameters of Qiantang River by the GF-1 satellite data, and the research methods and results offer reference for the study of water color remote sensing in other river basins.
关键词
叶绿素a浓度 /
总悬浮物浓度 /
钱塘江 /
高分一号卫星 /
遥感模型
Key words
chlorophyll-a concentration /
total suspended matter concentration /
Qiantang River /
GF-1 satellite /
remote sensing model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MOSES W J, GITELSON A A, BERDNIKOV S,et al. Estimation of Chlorophyll-a Concentration in Case II Waters Using MODIS and MERIS Data-Successes and Challenges[J]. Environmental Research Letters, 2009, 4(4): 045005.
[2] ONDRUSEK M, STENGEL E, KINKADE C S, et al.The Development of a New Optical Total Suspended Matter Algorithm for the Chesapeake Bay[J]. Remote Sensing of Environment, 2012, 119(8): 243-254.
[3] PETUS C, CHUST G, GOHIN F,et al. Estimating Turbidity and Total Suspended Matter in the Adour River Plume (South Bay of Biscay) Using MODIS 250-m Imagery[J]. Continental Shelf Research, 2010, 30(5): 379-392.
[4] 刘王兵, 于之峰, 周 斌, 等. 杭州湾HJ CCD影像悬浮泥沙遥感定量反演[J]. 遥感学报, 2013, 17(4): 912-918.
[5] 姚 伟. 基于遥感的水体悬浮物含量变化研究——以钱塘江流域浙江段为例[D]. 杭州:浙江大学, 2006.
[6] CAI L N, TANG D L, LI C Y. An Investigation of Spatial Variation of Suspended Sediment Concentration Induced by a Bay Bridge Based on Landsat TM and OLI Data[J]. Advances in Space Research, 2015, 44(2):293-303.
[7] 秦 鹏,王英华,王维汉,等. 河流健康评价的模糊层次与可变模糊集耦合模型 [J].浙江大学学报(工学版),2011,45(12):2169-2175.
[8] 唐军武, 田国良, 汪小勇,等. 水体光谱测量与分析 Ⅰ:水面以上测量法[J]. 遥感学报, 2004, 8(1):37-44.
[9] CARDER K L, CHEN F R, LEE Z P,et al. Semianalytic Moderate-Resolution Imaging Spectrometer Algorithms for Chlorophyll-a and Absorption with Bio-optical Domains Based on Nitrate-depletion Temperatures[J]. Journal of Geophysical Research-Oceans, 1999, 104(C3): 5403-5421.
[10]AWAS M. Sea Water Chlorophyll-a Estimation Using Hyperspectral Images and Supervised Artificial Neural Network[J]. Ecological Informatics, 2014, 24: 60-68.
[11]SUN D, LI Y, WANG Q, et al.A Novel Support Vector Regression Model to Estimate the Phycocyanin Concentration in Turbid Inland Waters from Hyperspectral Reflectance[J]. Hydrobiologia, 2012, 680(1): 199-217.
[12]王 繁, 周 斌, 徐建明,等. 基于实测光谱的杭州湾悬浮物浓度遥感反演模式[J]. 环境科学, 2008,29(11):3022-3026.
[13]HAN L, JORDAN K J. Estimating and Mapping Chlorophyll-a Concentration in Pensacola Bay, Florida Using Landsat ETM+ Data[J]. International Journal of Remote Sensing, 2005, 26(23): 5245-5254.
[14]BRIVIO P A, GIARDINO C, ZILIOLI E. Determination of Chlorophyll Concentration Changes in Lake Garda Using an Image-based Radiative Transfer Code for Landsat TM Images[J]. International Journal of Remote Sensing, 2001, 22(2/3): 487-502.
[15]王景琪.基于GF-1影像的鄱阳湖水体叶绿素反演及光谱形态分类研究[D].南昌:东华理工大学,2013.
[16]DUAN H, ZHANG Y, ZHANG B, et al.Assessment of Chlorophyll-a Concentration and Trophic State for Lake Chagan Using Landsat TM and Field Spectral Data[J]. Environmental Monitoring and Assessment, 2007, 129(1/2/3): 295-308.
[17]旷 达, 韩秀珍, 刘 翔,等. 基于环境一号卫星的太湖叶绿素a浓度提取[J]. 中国环境科学, 2010, 30(9):1268-1273.
[18]陈 静,吴传庆,申 维,等. 基于环境一号卫星CCD数据的巢湖叶绿素a的动态监测[J]. 中国环境监测, 2012, 28(1):116-119.
[19]朱 利,李云梅, 赵少华,等. 基于GF-1号卫星WFV数据的太湖水质遥感监测[J]. 国土资源遥感, 2015, 27(1):113-120.
[20]谢小韦. 多元线性模型中偏最小二乘回归的分析研究[D]. 南京:河海大学, 2008.
[21]何 青, 恽才兴, 时伟荣. 长江口表层水体悬沙浓度场遥感分析[J]. 自然科学进展, 1999, 9(2):66-70.
[22]盛海燕, 韩轶才, 姚佳玫,等. 钱塘江干流杭州段水体叶绿素a浓度及与环境因子的关系[J]. 生态科学, 2010, 29(1):56-62.
基金
国家自然科学基金青年基金项目(41501374);浙江省自然科学青年基金项目(LQ16D010001);浙江省教育厅科研项目(Y201534666);浙江省教育厅访问学者专业发展项目(FX2016060)