孔隙溶液酸碱度对重塑黄土工程性质的影响研究

杨秀娟, 汪源, 樊恒辉, 徐凝睿

raybet体育在线 院报 ›› 2018, Vol. 35 ›› Issue (9) : 92-97.

PDF(4025 KB)
PDF(4025 KB)
raybet体育在线 院报 ›› 2018, Vol. 35 ›› Issue (9) : 92-97. DOI: 10.11988/ckyyb.20170357
岩土工程

孔隙溶液酸碱度对重塑黄土工程性质的影响研究

  • 杨秀娟, 汪源, 樊恒辉, 徐凝睿
作者信息 +

Effects of Pore Solution’s pH Value on EngineeringProperties of Remolded Loess

  • YANG Xiu-juan, WANG Yuan, FAN Heng-hui, XU Ning-rui
Author information +
文章历史 +

摘要

随着社会发展,工业废水排放导致地基土污染已经成为较为严重的环境岩土工程问题。为了研究黄土地基在酸碱污染后工程性质的变化情况,从水-土相互作用的角度出发,以盐酸和氢氧化钠溶液为污染物,人工制备5种不同酸碱度的溶液用于浸泡黄土,并通过基本土工试验及电阻率试验测试了重塑黄土工程性质指标变化情况。研究发现:随着孔隙溶液酸性增强,重塑黄土的液限、塑性指数、渗透系数、黏聚力和内摩擦角逐渐增大,电阻率逐渐减小;随着孔隙溶液碱性增强,土体中的黏粒含量增加,液限、塑性指数和电阻率逐渐降低,黏聚力、内摩擦角和渗透系数逐渐增大。研究孔隙溶液酸碱度对土体基本物理力学性质的影响,可为环境岩土工程实践提供借鉴。

Abstract

With the rapid development of society, foundation soil pollution caused by vast waste water discharge has arising as a severe geoenvironmental problem. The changes in engineering properties of remolded loess polluted by hydrochloric acid and sodium hydroxide solutions are investigated via geotechnical test and resistivity test. The solutions are prepared at five different pH values. Result demonstrates that with the increase of acidity of the solution, the liquid limit,plasticity index, permeability coefficient, cohesive force and internal frication angle gradually increased, while electrical resistivity decreased; with the increase of alkalinity of the solution, the clay content, cohesive force, internal friction angle, and permeability coefficient increased, while liquid limit, plasticity index and electrical resistivity gradually decreased. Researching the effect of pH value of pore solution on properties of loess would offer reference for geoenvironmental practice.

关键词

重塑黄土 / 环境岩土 / 酸碱污染 / 孔隙溶液酸碱度 / 工程性质

Key words

remolded loess / geoenvironmental problem / acid-base pollution / pH value of pore solution / engineering property

引用本文

导出引用
杨秀娟, 汪源, 樊恒辉, 徐凝睿. 孔隙溶液酸碱度对重塑黄土工程性质的影响研究[J]. raybet体育在线 院报. 2018, 35(9): 92-97 https://doi.org/10.11988/ckyyb.20170357
YANG Xiu-juan, WANG Yuan, FAN Heng-hui, XU Ning-rui. Effects of Pore Solution’s pH Value on EngineeringProperties of Remolded Loess[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(9): 92-97 https://doi.org/10.11988/ckyyb.20170357
中图分类号: TU441   

参考文献

[1] 陈云敏,施建勇,朱 伟,等. 环境岩土工程研究综述[J]. 土木工程学报,2012,45(4):165-172.
[2] PAYNE K, PICKERING W F.Influence of Clay-solute Interactions on Aqueous Copper Ion Levels[J]. Water, Air and Soil Pollution, 1975, 5(1):63-90.
[3] FARRAH H, PICKERING W F.Influence of Clay-solute Interactions on Aqueous Heavy Metal Ion Levels[J]. Water, Air and Soil Pollution, 1977, 8(2):189-197.
[4] 顾季威. 酸碱废液侵蚀地基土对工程性质的影响[J]. 岩土工程学报,1988,10(4):72-78.
[5] 孙重初. 酸液对红粘土物理力学性质的影响[J]. 岩土工程学报,1989,11(4):89-93.
[6] 胡中雄,席永慧. 硫酸根离子污染地基的检测和处理[J]. 岩土工程学报,1994,16(1):54-55.
[7] 李 琦,施 斌,王友诚. 造纸场废碱液污染土的环境岩土工程研究[J]. 环境污染与防治,1997,19(5):6-18.
[8] 许中坚,刘广深,喻佳栋,等. 模拟酸雨对红壤结构体及其胶结物影响的实验研究[J]. 水土保持学报,2002,16(3):9-11.
[9] 张信贵,易念平,吴 恒,等. 不同 pH 水环境下土变形特性的试验研究[J]. 高校地质学报,2006,12(2):242-248.
[10]刘汉龙,朱春鹏,张晓璐. 酸碱污染土基本物理性质的室内测试研究[J]. 岩土工程学报,2008,30(8):1213-1217.
[11]朱春鹏,刘汉龙,沈 杨. 酸碱污染软黏土变形性质的三轴试验研究[J]. 岩土工程学报,2009,31(1):1559-1563.
[12]相兴华,韩鹏举,王 栋,等. NaOH和 NH3·H2O 环境污染土的试验研究[J]. 太原理工大学学报,2010,41(2):134-138.
[13]杨秀娟,贾永刚. 化学胶结对黄河入海泥沙结构强度影响的试验研究[J]. 工程地质学报,2012,20(增刊):82-88.
[14]王 军,曹 平,赵延林,等. 水土化学作用对土体抗剪强度的影响[J]. 中南大学学报(自然科学版),2010,41(1):245-250.
[15]王绪民,陈善雄,程昌炳. 酸性溶液浸泡下原状黄土物理力学特性试验研究[J]. 岩土工程学报,2013,35(9):1619-1626.
[16]CAMA J, METZ V, GANOR J. The Effect of pH and Temperature on Kaolinite Dissolution Rate under Acidic Conditions[J]. GeochimicaetCosmochimicaActa,2002, 66(22):3913-3926.
[17]HUERTAS F J, CHOU L, WOLLAST R. Mechanism of Kaolinite Dissolution at Room Temperature and Pressure: Part 2. Kinetic Study[J]. Geochimica et Cosmochimica Acta, 1999,63(19/20):3261-3275.
[18]樊恒辉,李洪良,赵高文. 黏性土的物理化学及矿物学性质与分散机理[J]. 岩土工程学报,2012,34(9):1740-1745.
[19]刘东生. 黄土与环境[M]. 北京:科学出版社,1985:301-302.
[20]郭玉文,王淑红,张玉龙,等. 黄土高原灌溉农田土壤团粒与碳酸钙关系研究[J]. 深圳大学学报(理工版), 2008,25(3):314-319.
[21]COTECCHIA F, CHANDLER R J. A General Framework for the Mechanical Behavior of Clays[J]. Geotechnique, 2000, 50(4): 431-477.
[22]SIVAPULLAIAH P V, MANJU. Kaolinite-alkali Interaction and Effects on Basic Properties[J]. Geotechnical & Geological Engineering, 2005, 23(5):601-604.
[23]刘汉龙,朱春鹏,沈 扬. 酸碱污染土工程性质研究[J]. 湖南大学学报(自然科学版),2008,35(11):39-44.
[24]KAZEMIAN S, BUJIANG B K, BARGHCHI M. Effect of Calcium Chloride and Kaolinite on Shear Strength and Shrinkage of Cement Grout[J]. International Journal of the Physical Science, 2011, 6(4):707-713.
[25]李云章. 湿陷性黄土地基碱液加固[J]. 建筑结构学报,1982,(1):69-80.
[26]王 婷,张爱军,刘宏泰,等. 不同酸度溶液渗透溶液对重塑黄土渗透特性影响研究[J]. raybet体育在线 院报,2013, 30(2): 35-40.
[27]MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. Hoboken: John Wiley & Sons, Inc., 2005.
[28]查甫生,刘松玉,杜延军,等. 非饱和黏性土的电阻率特性及其试验研究[J].岩土力学,2007,28(8):1671-1676.
[29]OZCEP F,YILDIRIM E,TEZEL O, et al. Correlation Between Electrical Resistivity and Soil-water Content Based Artificial Intelligent Techniques[J]. International Journal of Physical Sciences, 2010, 5(1):47-56.
[30]查甫生,刘松玉,杜延军,等. 击实黄土的电阻率特性试验研究[J]. 岩土力学,2011, 32(增2):155-159.
[31]KALINSKI RJ,KELLY W E. Electrical-Resistivity Measurements for Evaluating Compacted-Soil Liners[J]. Journal of Geotechnical Engineering, 1994, 120(2):451-457.
[32]CHAUDHRY M N H. The Effects of Moisture, Cation Concentration, Temperature, Density and Composition of Soils on Their Electrical Resistivity[D].Ontario:Brock University, 1984.
[33]米萨克,N·纳比吉安.勘察地球物理电磁法(第一卷 理论)[M]. 赵经祥等,译. 北京:地质出版社,1992.

基金

国家自然科学基金项目(51409217,51579215);杨凌示范区科技计划项目(2018NY-28);中央高校基本科研业务费科技创新项目(2014YB047);国家留学基金资助项目([2015]3069号)

PDF(4025 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map