利用平面应变条件下均质无限长土坡坡土的应力分量,考虑坡土破坏的非线性特征,借鉴黏塑性理论过应力模型,通过拟定坡土滑移速度与黏塑性应变率之间的关系式,基于Cam-Clay模型推导出非线性Mohr-Coulomb破坏准则下坡土滑移速度和位移的显式表达式。针对2个边坡实例进行计算分析,结果表明:计算值与边坡实测数据和前人的研究成果吻合良好;非线性破坏准则的3个强度参数对无限长土坡的渐进变形有显著影响,随着非线性参数c0减小、m增大、σt减小,边坡渐进变形逐渐增大,剪切层深度也不断增加。
Abstract
The shear stress of homogeneous slope soil with infinite length under plane strain condition is obtainedand a nonlinear strength is incorporated into the overstress creep model. With Cam-clay model, the explicit expres-sions of slope soil’s sliding velocity and displacement are deducted following Mohr-Coulomb failure criterion by establishing the relationship between velocity or displacement and visco-plastic strain rate of the slope soil. Numerical calculation results agree with the field measured data. Parametric study on the nonlinear strength is also performed to investigate their influences on the creep or progressive deformation of soil slope. It is found that the progressive deformation of slope and thickness of shear zone both increase with the decrease of nonlinear parameters c0 and σt and the increase of parameter m.
关键词
无限长土坡 /
渐进变形 /
非线性破坏准则 /
过应力模型 /
解析解
Key words
soil slope with infinite length /
progressive deformation /
nonlinear failure criterion /
overstress model /
analytical solution
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LADE P V.Elasto-plastic Stress-strain Theory for Cohesionless Soil with Curved Yield Surfaces[J].International Journal of Solids and Structures,1977,13(11):1019-1035.
[2] HOEK E. Strength of Jointed Rock Masses[J]. Geotechnique, 1983, 33(3): 187-223.
[3] AGAR J G, MORGENSTERN N R, SCOTT J. Shear Strength and Stress-strain Behaviour of Athabasca Oil Sand at Elevated Temperatures and Pressure[J]. Canadian Geotechnical Journal, 1985, 24(1): 1-10.
[4] SANTARELLI F J.Theoretical and Experimental Investigation of the Stability of the Axisymmetric Wellbore[D].London:Imperial College London(University of London),1987.
[5] BAKER R. Nonlinear Mohr Envelopes Based on Triaxial Data[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(5): 498-506.
[6] SKEMPTON A W. Long-term Stability of Clay Slopes[J]. Geotechnique, 1964, 14(2):75-102.
[7] 沈珠江. 理论土力学[M]. 北京:中国水利水电出版社, 2000: 291-292.
[8] WEDAGE A M P, MORGENSTERN N R, CHAN D H. Simulation of Time-dependent Movements in Syncrude Tailings Dyke Foundation[J]. Canadian Geotechnical Journal, 1998, 35(2): 284-298.
[9] 周 成, 蔡正银, 谢和平. 天然裂隙土坡渐进变形解析[J]. 岩土工程学报, 2006, 28(2):174-178.
[10]CRISTESCU N D, CAZACU O, CRISTESCU C. A Model for Slow Motion of Natural Slopes[J].Canadian Geotechnical Journal, 2002, 39(4): 924-937.
[11]刘 焦, 周 成, 陈 磊,等. 基于Bingham模型考虑根系固土的边坡渐进变形模拟[J]. 四川大学学报(工程科学版), 2013,(S1):74-78.
[12]HERRERA G, FERNÁ NDEZ-MERODO J A, MULAS J, et al. A Landslide Forecasting Model Using Ground Based SAR Data: The Portalet Case Study[J]. Engineering Geology, 2009, 105(3/4):220-230.
[13]SAVAGE W Z, CHLEBORAD A F. A Model for Creeping Flow in Landslides[J]. Bulletin of the Association of Engineering Geologists, 1982, 19(4): 333-338.
[14]HINCHBERGRE S D, QU G F, LO K Y. Constitutive Approach for Rate-sensitive Anisotropic Structured Clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(17): 1797-1830.
[15]ZHANG X J, CHEN W F. Stability Analysis of Slopes with General Nonlinear Failure Criterion[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11(1): 33-50.
[16]DESAI C S, SAMTANI N C, VULLIET L. Constitutive Modeling and Analysis of Creeping Slopes[J]. Journal of Geotechnical Engineering, 1995, 121(1): 43-56.
基金
国家自然科学基金项目(51579167);水利部公益性行业专项(201301022);水利部土石坝破坏机理与防控技术重点实验室开放基金项目(YK915003)