旧有隧道隐伏病害复杂多样,持续演变会对隧道结构与行车安全造成危害。虽然探地雷达技术(GPR)在隐伏病害调查中已应用广泛,但对GPR异常特征的认识并未统一,相应病害程度评价体系亦未建立。为进一步推动技术发展,归纳总结不同成因旧有隧道病害,建立相应介电模型,正演得到GPR理论图像并与工程实测图像对比,进行异常特征甄别;引入模糊数学的隶属度理论将多个因素进行综合评判,建立旧有隧道病害程度评判体系。研究表明:隧道衬砌裂缝和空洞会因填充介质不同,介电常数差异显著,多表现为同相轴错断或者局部性绕射增强的异常特征;衬砌非密实区和防渗层破坏区会持续发展成水-混凝土-残积物混合群块结构,具有多个反射界面,相应GPR图像波形杂乱,并伴有局部强反射。应用实例显示利用GPR诊测确定潜在病害区域后,在核定与旧有隧道隐伏病害相适宜的评价权重基础上,以建立的评价模型将多因素制约对象进行隶属度综合评判,能够较好地开展旧有隧道安全等级划分。
Abstract
The worsening of hidden diseases of old tunnel, which are of variety and complexity, would cause harm to tunnel structure and traffic safety. Although ground penetrating radar (GPR) technology has been widely applied to the investigation of hidden diseases, no uniform understanding or systematic conclusion of anomaly features in GPR images has been reached. In this article we sum up the types and causes of old tunnel diseases, and set up corresponding earth-electricity models to identify anomaly features through forward modeling and comparing the GPR images with field measurements. Moreover, we establish an evaluation system for old tunnel disease by introducing the concept of membership degree in fuzzy mathematics. Results show that the dielectric constants of lining crack and cavity are significantly different due to different filling mediums, reflected by event dislocation and local improvement of diffraction patterns. The non-compacted and impervious layer gradually develops into a mixed structure involving water, concrete, and residues with multiple reflection interfaces, and the corresponding GPR image is cluttered with local strong reflection. Application practice prove that the presented model could well assess the safety levels of old tunnels based on GPR detection of potential disease areas.
关键词
旧有隧道 /
隐伏病害 /
探地雷达 /
异常特征 /
病害评判体系
Key words
old tunnel /
hidden diseases /
ground penetrating radar (GPR) /
anomaly features /
disease evaluation system
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 俞宏熙. 在役公路隧道衬砌病害分析及整治技术[J].市政技术,2016,34(3):69-70,73.
[2] 刘新荣,舒志乐,朱成红,等. 隧道衬砌空洞探地雷达三维探测正演研究[J]. 岩石力学与工程学报,2010,29(11):2221-2229.
[3] 杜 良,刘树才,梁棋念,等.隧道检测中基本形状空洞探地雷达图像特征[J].地球物理学进展,2015,30(6):2892-2896.
[4] 丁 亮,韩 波,刘润泽.混凝土结构缺陷检测的探地雷达资料波场反演方法[J].地球物理学进展,2012,27(1):376-385.
[5] 王正成,吴 晔.探地雷达隧道衬砌质量检测技术[J].物探与化探,2013,37(6):1152-1156.
[6] 董茂干,吴姗姗,黄 宁,等.探地雷达在南京地铁隧道工程检测中的应用[J]. 物探与化探,2014,38(5):1090-1094.
[7] 穆维超,刘方元,霍二伦.探地雷达在隧道衬砌检测中的应用[J].山西建筑,2009,35(1):337-338 .
[8] 周奇才,周 杰,范思遐,等.高铁隧道GPR技术研究与应用[J].物探与化探,2014,38(1):185-188.
[9] WHITELEY B,SIGGINS T. Geotechnical and NDT Applications of Ground Penetrating Radar in Australia[C]∥Proceedings of the Eighth International Conference on Ground Penetrating Radar, doi: 10.1117/12.383517.
[10]刘振东. 公路隧道隐伏病害快速无损检测与安全评价体系构建[D].青岛:中国海洋大学,2013.
[11]杨艳青. 运营隧道健康诊断及剩余寿命评估研究[D].北京:北京交通大学,2012.
[12]黄东辉. 隧道施工安全控制技术研究[D].北京:北京工业大学,2015.
[13]杜应吉. 地铁工程混凝土耐久性研究与寿命预测[D].南京:河海大学,2005.
[14]陈 娟. 钢筋混凝土结构耐久寿命预测的概述[J]. 长江大学学报(自然科学版)理工卷,2010,7(1):309-310,354.
[15]王显利,李雪艳,孟宪强. 钢筋混凝土锈胀开裂耐久寿命的预测[J]. 东北林业大学学报,2007,35(8):54-57.
[16]孙寿榜. 近距离隧道施工对既有隧道结构安全性影响研究[D].兰州:兰州交通大学,2014.
[17]岳全贵,张 杨,肖国强,等. 探地雷达的常见干扰和不良地质体的超前预报在隧道工程中的应用[J].raybet体育在线
院报,2017,34(8):36-40,63.
[18]周奇才,李炳杰,郑宇轩,等.基于GPRMax2D的探地雷达图像正演模拟[J].工程地球物理学报,2008,5(4):396-399.
[19]韩 直,白 云.公路隧道安全评价指标体系与方法[J].公路交通技术,2008,(6):125-128.
[20]黄 波,吴江敏.运营隧道状态的综合评判[J].世界隧道,2000,(1):58-60.
[21]王莲芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社,1990.
基金
国家自然科学基金重大科研仪器研制项目(41427803);国家重点研发项目(2017YFC0307701);国家自然科学基金项目(41772307)