在含单裂隙岩体的试验中,对裂纹类型和试样破坏模式的研究可以帮助预测裂纹的萌生、扩展等现象,然而在工程结构设计中,应该更加关注岩体的承载力,即破坏强度。为了研究裂隙与岩体强度的关系,采用FLAC3D建立相应试样的数值计算模型,同时改变其中单裂隙的倾角、长度等参数,通过对多组试样的加载试验,研究了单裂隙的几何参数(裂隙倾角、长度和张开度)对岩样破坏强度的影响。结果表明:随着裂隙长度的增大,试样峰值应力不断降低;随着裂隙倾角的增大,试样峰值应力整体呈增大趋势,但是当倾角<60°时,增长较缓慢,当倾角>60°时,峰值应力迅速增大;在试验范围内,随着裂隙张开度的增大,试样峰值应力基本保持不变。研究成果可为预测含单裂隙岩体的裂纹扩展和强度提供参考依据。
Abstract
In tests of rock specimens containing single flaw, researching the crack types and failure modes are conducive to predicting the initiation and propagation of cracks; yet in engineering design, the bearing capacity, namely damage strength, should receive more attention. In order to investigate into the relation between crack and rock strength, we built numerical models for corresponding test specimens in FLAC3D, and furthermore researched theinfluence of single crack’s geometric parameters (inclusive of inclination angle, length, and thickness) on the damage strength of rock specimens by adjusting the parameters in numerical model. Results revealed that the peak strength of specimen declined continuously as crack length increased; while when inclination angle increased, peak strength displayed a trend of increasing in general, increasing slowly when inclination angle was smaller than 60°and rapidly when inclination angle was larger than 60°. Within the test range, peak strength remained unchanged as flaw thickness increased.
关键词
单裂隙 /
FLAC3D /
单轴压缩 /
几何参数 /
峰值应力 /
破坏模式
Key words
single flaw /
FLAC3D /
uniaxial compression /
geometric parameters /
peak strength /
failure mode
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LEE H, JEON S. An Experimental and Numerical Study of Fracture Coalescence in Pre-cracked Specimens under Uniaxial Compression[J]. International Journal of Solids and Structures, 2011, 48(6):979-999.
[2] 林 鹏,黄凯珠,王仁坤,等.不同角度单裂纹缺陷试样的裂纹扩展与破坏行为[J].岩石力学与工程学报,2005,24(增2):5652-5657.
[3] 黄 达,岑夺丰,黄润秋.单裂隙砂岩单轴压缩的中等应变率效应颗粒流模拟[J].岩土力学,2013,34(2):535-545.
[4] 顾成富,王 辉.压应力作用不同裂纹分布下岩石破坏过程的数值模拟[J].煤炭技术,2015,34(5):108-110.
[5] 蒋明镜,陈 贺.岩石裂纹扩展与贯通机制的离散元数值分析[C]∥颗粒材料计算力学研究进展.大连:大连理工大学出版社,2012:326-337.
[6] 明华军,徐小峰,梁 波.不同裂隙张开度下岩石材料破坏的颗粒离散元模拟[J].三峡大学学报(自然科学版),2013,35(6):63-66.
[7] WANG R, ZHAO Y, CHEN Y, et al. Experiment and Finite Element Simulation of X-type Shear Fractures from a Crack in Marble[J]. Tectonophysics,1987,144(1/3):141-150.
[8] HUANG J, CHEN G, ZHAO Y, et al. An Experimental Study of the Strain Field Development Prior to Failure of a Marble Plate under Compression[J]. Tectonophysics, 1990, 175(1/3):269-284.
[9] WONG L N Y, EINSTEIN H H. Systematic Evaluation of Cracking Behavior in Specimens Containing Single Flaws under Uniaxial Compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2):239-249.
[10]郭彦双,黄凯珠,朱维申,等.辉长岩中张开型表面裂隙破裂模式研究[J].岩石力学与工程学报,2007,26(3):525-531.
[11]肖桃李,李新平,郭运华.三轴压缩条件下单裂隙岩石的破坏特性研究[J].岩土力学,2012,33(11):3251-3256.
[12]黄彦华,杨圣奇.非共面双裂隙红砂岩宏细观力学行为颗粒流模拟[J].岩石力学与工程学报,2014,33(8):1644-1653.
[13]杨圣奇,黄彦华,刘相如.断续双裂隙岩石抗拉强度与裂纹扩展颗粒流分析[J].中国矿业大学学报,2014,43(2):220-226.
[14]杨圣奇,蒋昱州,温 森.两条断续预制裂纹粗晶大理岩强度参数的研究[J].工程力学,2008,25(12):127-134.
[15]龚曙光.ANSYS参数化编程与命令手册[M].北京:机械工业出版社, 2009.
[16]Itasca Consulting Group. Fast Lagrangian Analysis of Continua in 3 Dimensions,User Manual,Version 3.1[M]. Minneapolis,Minnesota:Itasca Consulting Group, Inc, 2004.
[17]WONG L N Y, EINSTEIN H H. Crack Coalescence in Molded Gypsum and Carrara Marble: Part 2—Microscopic Observations and Interpretation[J]. Rock Mechanics and Rock Engineering, 2009, 42(3): 513-545.
[18]LI Y P, CHEN L Z, WANG Y H. Experimental Research on Pre-cracked Marble under Compression[J]. International Journal of Solids and Structures, 2005, 42(9/10): 2505-2516.
基金
国家自然科学基金项目(51474249,51774322);中南大学“创新驱动计划”项目(2016CX019);河南省瓦斯地质与瓦斯治理重点实验室开放基金项目(WS2013A01)