在隧道开挖及运行过程中,不可避免地会对岩土体产生扰动,引起隧道地表产生沉降,对于隧道地表沉降分析,目前尚无成熟的基于力学理论的解析模型。针对该问题,将水平隧道地表沉降问题近似为半无限空间内水平圆柱形孔洞受力收缩导致的边界位移问题,并通过求解弹性无限域内的轴对称平面应变问题,运用叠加原理推导得到含水平圆柱形孔洞的半无限空间地表沉降的弹性积分形式解析解。然后运用对应原理,将体积变形视为弹性,畸变视为Maxwell黏弹性,对地表沉降弹性积分形式解析解进行拉普拉斯变换,得到时空域上的地表沉降的黏弹性积分形式解析解,从而建立隧道地表沉降的黏弹模型。模型揭示隧道地表沉降槽宽度系数为0.6,与多地区沉降监测数据吻合良好,为隧道地表沉降预测提供了一套新的基于力学理论的方法。
Abstract
Surface subsidence will be induced by rock-soil mass being disturbed in the process of excavation and long-term operation of tunnels. At present, there is no mature analytical model based on the theory of mechanics. In this research, the surface subsidence above tunnel is approximated to boundary deformation in the elastic semi-infinite space containing a horizontally cylindrical cavern with shrinkage force. By solving the symmetrically plan-strain problem in elastic infinite space, the elastic analytical solution of the surface subsidence in integral form is derived with the principle of superposition. Subsequently, the viscoelastic analytical solution in integral form in space-time domain is obtained by Laplace transformation of elastic analytical solution with volume deformation regarded as elasticity and distortion as Maxwell viscoelasticity. The proposed model reveals that the width coefficient of settlement troughs above tunnels is 0.6, in good agreement with the monitoring data in many other regions. The method in this article offers a theoretical approach for surface subsidence prediction in the process of excavation and long-term operation of tunnels.
关键词
隧道 /
地表沉降 /
力学解析解 /
黏弹性模型 /
无量纲化
Key words
tunnel /
surface subsidence /
mechanical analytical solution /
viscoelastic model /
dimensionless
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 周 伟. 隧道施工地面沉降数值分析研究[D]. 武汉: 华中科技大学, 2006.
[2] 李银平,孔君凤,徐玉龙,等. 利用Mogi模型预测盐岩储气库地表沉降[J]. 岩石力学与工程学报,2012,31(9): 1737-1745.
[3] 任 松,姜德义,杨春和,等. 岩盐水溶开采沉陷新概率积分三维预测模型研究[J]. 岩土力学,2007,28(1): 133-138.
[4] 韩 煊,李 宁,STANDING J R. Peck公式在我国隧道施工地面变形预测中的适用性分析[J]. 岩土力学,2007,28(1): 23-28.
[5] MOGI K. Relations Between the Eruptions of Various Volcanoes and the Deformations of the Ground Surfaces around Them[J]. Bulletin of the Earthquake Research Institute,1958, 36: 99-134.
[6]YAMAKAWA N. On the Strain Produced in a Semi-infinite Elastic Solid by an Interior Source of Stress[J]. Journal of Seismological Society of Japan, 1955, 8(2): 84-98.
[7] 麻凤海,范学理. 水平煤层开采地表沉陷空间问题的理论研究[J]. 中国矿业,1994, 3(6): 44-49.
[8] 麻凤海,范学理. 连续介质流变理论及其在岩层下沉动态过程中的应用[J]. 中国有色金属学报,1996, 6(4): 7-12.
[9] FIALKO Y, KHAZAN Y, SIMONS M. Deformation Due to a Pressurized Horizontal Circular Crack in an Elastic Half-space, with Applications to Volcano Geodesy[J]. Geophysical Journal International, 2001, 146(1): 181-190.
[10]EICKEMEIER R. A New Model to Predict Subsidence above Brine Fields[C]∥Solution Mining Research Institute.SMRI Fall 2005 Technical Conference,Nancy, France, October 2-5, 2005.
[11]李银平,孔庆聪,施锡林,等. 盐穴地下储库地表沉降的黏弹模型及其应用[J]. 岩土力学,2017,38(7):2049-2058.
[12]杨挺青. 粘弹性力学[M]. 武汉:华中理工大学出版社, 1990.
[13]徐芝纶. 弹性力学 (上、 下)[M]. 北京: 高等教育出版社, 1990.
基金
国家自然科学基金项目(51274187,51404241,51304187)