《工程岩体分级标准》(GB/T 50218—2014)(简称《国标》)中给出了边坡工程岩体质量指标[BQ](简称边坡[BQ])的计算公式以及计算公式中修正系数的取值方法,用于国内边坡工程岩体质量分级和边坡自稳能力评估。通过对边坡[BQ]计算公式的研究,并参考其他常用的边坡工程岩体分级方法,指出了边坡[BQ]计算公式中的修正项和修正系数评价指标存在改进和完善的空间。在现有的边坡[BQ]计算公式的基础上,补充了坡高影响修正系数和应力状态影响修正系数以及相应的计算公式和取值标准,在结构面性状影响修正上细化了评价指标和相应的取值标准,使其更适用于复杂地质条件下的高陡边坡岩体分级,并给出了优化后的边坡[BQ]计算公式以及相应的BQ法边坡稳定性评价系统。研究成果有助于准确地进行边坡工程岩体质量分级,从而为评价边坡稳定性、设计加固方案提供参考依据。
Abstract
The calculation formula of rock quality index in slope engineering (hereafter referred to as BQ (basic quality)), together with the valuing of correction factor in the formula, is given in Standard of Engineering Rock Mass Classification(GB/T 50218-2014) for the rock quality rating and self-stability evaluation of slope engineering in China. With other commonly used rating methods as reference, we pointed out that the evaluation index of correction term and correction factor in the BQ formula needs to be improved. On the basis of the current BQ formula, we propose the correction factor of slope height influence and the correction factor of stress state influence, and give the corresponding calculation formulas and valuing criteria. We also refined the evaluation indexes and valuing criterion of the correction factor of structural plane influence for high and steep slope in complex geological conditions. Finally, we give the optimized BQ formula and the corresponding stability evaluation system for BQ method. The research results are conducive for a correct rock quality rating, and offer reference for slope stability evaluation and reinforcement design work.
关键词
BQ法 /
修正系数 /
边坡工程 /
岩体质量分级 /
稳定性评价
Key words
BQ method /
correction factor /
slope engineering /
rock mass quality classification /
stability evaluation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HACK R. Slope Stability Probability Classification (SSPC)[M].Delft:International Institute for Aerospace Survey and Earth Sciences,1996:258.
[2]HACK R. An Evaluation of Slope Stability Classification[C]∥ International Society for Rock Mechanics and Rock Engineering, ISRM International Symposium-EUROCK 2002, Madeira, Portugal, November 25-27, 2002:3-32.
[3] HACK R,PRICE D,RENGERS N. A New Approach to Rock Slope Stability—A Probability Classification (SSPC)[J]. Bulletin of Engineering Geology and the Environment,2003,62(2):167-184.
[4] SHUK T. Key Elements and Applications of the Natural Slope Methodology (NSM) with Some Emphasis on Slope Stability Aspects[C]∥Proceedings of the 4th South American Conference on Rock Mechanics. Santiago de Chile:Pergamon Press,1994:255-266.
[5] GB 50330—2002,建筑边坡工程技术规范[S].北京:中国建筑工业出版社,2002:66-67.
[6] SL 386—2007,水利水电工程边坡设计规范[S].北京:中国水利水电出版社,2009:43-44.
[7] BIENIAWSKI Z T.Rockmass Classifications in Rock Engineering[C]∥ International Society for Rock Mechanics and Rock Engineering, Symposium on Exploration for Rock Engineering, Johannesburg, November 1-5, 1976. Rotterdam:Balkema,1976:97-106.
[8] BIENIAWSKI Z T. Engineering Rockmass Classifications[M].New York:Wiley,1989:251.
[9] GB/T 50218—2014,工程岩体分级标准[S].北京:中国计划出版社,2015.
[10]ROMANA M. New Adjustment Ratings for Application of Bieniawski Classification to Slopes[C]∥Proceedings of the International Society for Rock Mechanics and Rock Engineering. Zacatecas,Mexico: International Symposium on Role of Rock Mechanics,1985:49-53.
[11]ROMANA M. SMR Classification[C]∥International Society for Rock Mechanics and Rock Engineering,7th ISRM Congress, Aachen, Germany, September 16-20, 1991:955-960.
[12]孙东亚,陈祖煜,杜伯辉,等.边坡稳定评价方法 RMR-SMR 体系及其修正[J].岩石力学与工程学报,1997,16(4):297-304.
[13]石豫川,王 哲,万国荣,等.山区高等级公路边坡岩体分级研究[J].岩石力学与工程学报,2005,24(6):939-944.
[14]张元才,黄润秋,赵立冬,等.天山公路边坡岩体质量评价TSMR体系研究[J].岩石力学与工程学报,2010,29(3):617-623.
[15]巫德斌,徐卫亚.岩石边坡力学参数取值的GSMR法[J].岩土力学,2005,26(9):1421-1426.
[16]张菊连,沈明荣.水电边坡岩体稳定性分级系统研究[J].岩石力学与工程学报,2011,30(增2):3481-3490.
[17]蔡 斌.国标《工程岩体分级标准》应用中的几个问题[J].岩土力学,2003,24(增刊):74-76.
[18]申艳军,徐光黎.国标岩体分级标准BQ的图解法表示[J].岩石力学与工程学报,2012,31(增2):3659-3665.
[19]李长雄.对现行工程岩体及隧道围岩分级标准的探讨[J].路基工程,2009,(4):96-97.
[20]蔡 斌,喻 勇,吴晓铭.《工程岩体分级标准》与Q分类法、RMR分类法的关系及变形参数估算[J].岩石力学与工程学报,2001,20(增刊):1677-1679.
[21]邬爱清,柳赋铮.国标《工程岩体分级标准》的应用与进展[J].岩石力学与工程学报,2012,31(8):1513-1523.
[22]魏云杰.中国西南水电工程区峨眉山玄武岩岩体结构特性及其工程应用研究[D].成都:成都理工大学,2007.
[23]张 强.金沙江观音岩电站红层钙质砂岩类岩溶发育特征及渗透稳定性研究[D].成都:成都理工大学,2010.
[24]李攀峰.大型地下洞室群围岩稳定性工程地质研究[D].成都:成都理工大学,2004.
[25]张曙光.金沙江白鹤滩水电站高拱坝建设工程地质适宜性研究[D]. 成都:成都理工大学,2007.
[26]王广德.复杂条件下围岩分类研究——以锦屏二级水电站深埋隧洞围岩分类为例[D].成都:成都理工大学,2006.
[27]张占荣.裂隙岩体变形特性研究[D].武汉:中国科学院武汉岩土力学研究所,2010.
[28]唐胜传.复杂场地高坝建设适宜性的工程地质研究[D].成都:成都理工大学,2002.
[29]陈近中.双江口电站工程岩体质量分级研究[D].成都:成都理工大学,2007.
[30]孙 苗.岩体质量分级的程序设计及应用[D].西安:长安大学,2011.
[31]卢书强.澜沧江糯扎渡水电站地下洞室群岩体质量分级及其对围岩稳定性的控制作用[D].成都:成都理工大学,2004.
[32]何江达,谢红强,王启智,等.官地水电站坝址区初始地应力场反演分析[J].岩土工程学报,2009,31(2):166-171.
[33]胡 斌,冯夏庭,黄小华,等.龙滩水电站左岸高边坡区初始地应力场反演回归分析[J].岩石力学与工程学报,2005,24(22):4055-4064.
[34]陈秀铜,李 璐.某水电站地下洞室群初始地应力场反演回归分析[J].岩土力学,2007,28(增):540-544.
[35]杨 强,刘福深,任继承.三维初始地应力场的多尺度弹塑性校正[J].水力发电学报,2007,26(6):24-29.
[36]蔡美峰,乔 兰,李长洪,等.深凹露天矿高陡边坡稳定性分析与设计优化[J].北京科技大学学报,2004,26(5):465-470.
[37]付成华,汪卫明,陈胜宏.溪洛渡水电站坝区初始地应力场反演分析研究[J].岩石力学与工程学报,2006,25(11):2305-2312.
[38]侯明勋,葛修润.岩体初始地应力场分析方法研究[J].岩土力学,2007,28(8):1626-1630.
[39]许传华,刁 虎,任青文,等.紫金山金铜矿初始地应力场反演分析[J].岩土力学,2009,30(2):425-428,432.
[40]金长宇,冯夏庭,张春生.白鹤滩水电站初始地应力场研究分析[J]. 岩土力学,2010,31(3):845-850,855.
[41]张建国,张强勇,杨文东,等.大岗山水电站坝区初始地应力场反演分析[J].岩土力学,2009,30(10):3071-3078.
[42]周 华,陈胜宏.高拱坝坝址区初始地应力场的二次计算[J].岩石力学与工程学报,2009,28(4):767-774.