膨胀土分类的PCA-ELM模型及应用

陈建宏, 李小龙, 梁伟章

raybet体育在线 院报 ›› 2018, Vol. 35 ›› Issue (12) : 96-101.

PDF(1903 KB)
PDF(1903 KB)
raybet体育在线 院报 ›› 2018, Vol. 35 ›› Issue (12) : 96-101. DOI: 10.11988/ckyyb.20170674
岩土工程

膨胀土分类的PCA-ELM模型及应用

  • 陈建宏1, 李小龙1,2, 梁伟章1
作者信息 +

PCA-ELM Model for Classification of Expansive Soil and Its Application

  • CHEN Jian-hong1, LI Xiao-long1,2, LIANG Wei-zhang1
Author information +
文章历史 +

摘要

为更合理确定膨胀土类别,将主成分分析(PCA)与极限学习机(ELM)相结合,提出一种膨胀土分类的PCA-ELM模型。选取能充分反映膨胀土类别的液限、塑性指数、<2 μm胶粒含量与自由膨胀率4项指标进行分析,运用主成分分析对各指标进行相关性处理,依据方差累计贡献率得出2个主成分。将70%的样本划分为训练集,30%划分为测试集,将训练集作为极限学习机输入,并采用十折交叉验证以优化模型参数,从而得到最优分类模型。然后将测试集作为最优模型输入,得到分类结果。最后,选用2个工程实例共32个样本对所建立模型进行验证,结果表明:该模型分类结果与实际较吻合;训练集与测试集分类精度分别达94.20%和79.00%,并具有较快的训练速度。PCA-ELM模型适用于大规模数据的分类预测。

Abstract

A PCA-ELM model for better classifying expansive soil was proposed in this paper by integrating Principal Component Analysis(PCA) and Extreme Learning Machine(ELM). Four classification indexes well reflecting the swell-shrink characteristics of expansive soils, namely liquid limit, plasticity index, content of clay particles smaller than 2 μm, and free swell ratio, were selected for correlation analysis, and two principal components were determined according to accumulated variance contribution rate.Subsequently, 70% of the samples were divided as training set which was taken as the input of extreme learning machine, and 10-fold cross validation was used to optimize model parameters so as to achieve the optimal classification; 30% of the samples were chosen as test set as the input of the optimal model to obtain classification results.The classification model was validated with 32 testing examples from two engineering projects, and results suggest that the classification results agreed well with measured data, with the classification accuracy of training set and test set reaching 94.20% and 79.00%, respectively; moreover, the proposed model is of fast training speed, hence is suitable for the classification and prediction of large-scale data.

关键词

膨胀土 / 极限学习机 / 主成分分析 / 分类模型 / 交叉验证

Key words

expansive soil / extreme learning machine / principal component analysis / classification model / cross validation

引用本文

导出引用
陈建宏, 李小龙, 梁伟章. 膨胀土分类的PCA-ELM模型及应用[J]. raybet体育在线 院报. 2018, 35(12): 96-101 https://doi.org/10.11988/ckyyb.20170674
CHEN Jian-hong, LI Xiao-long, LIANG Wei-zhang. PCA-ELM Model for Classification of Expansive Soil and Its Application[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(12): 96-101 https://doi.org/10.11988/ckyyb.20170674
中图分类号: TU443   

参考文献

[1] SHI B, JIANG H, LIU Z, et al. Engineering Geological Characteristics of Expansive Soils in China[J] . Engineering Geology, 2002, 67(1/2): 63-71.
[2] WANG M, LI J, GE S, et al. Moisture Migration Tests on Unsaturated Expansive Clays in Hefei, China[J] . Applied Clay Science, 2013, 79(7): 30-35.
[3] 刘 鸣, 程永辉, 童 军. 南水北调中线工程膨胀土边坡处理效果及评价[J] . raybet体育在线 院报, 2016, 33(3): 104-110.
[4] 陈善雄, 余 颂, 孔令伟, 等. 膨胀土判别与分类方法探讨[J] . 岩土力学, 2005, 26(12): 1895-1900.
[5] 谭罗荣, 张梅英, 邵梧敏, 等. 风干含水量W65用作膨胀土判别分类指标的可行性研究[J] . 工程地质学报, 1994, 2(1): 15-26.
[6] 马桂芝. 应用塑性图对陕西特殊土的判别[J] . 西安地质学院学报, 1995, 17(2): 87-89.
[7] 郭昱葵, 熊友山, 姚海林, 等. 模糊数学在当宜高速公路膨胀土判别和分类中的应用[J] . 岩土力学, 1999, 20(3): 61-65.
[8] YILMAZ I. Indirect Estimation of the Swelling Percent and A New Classification of Soils Depending on Liquid Limit and Cation Exchange Capacity[J] . Engineering Geology, 2006, 85(3/4): 295-301.
[9] 宫凤强, 李夕兵. 膨胀土胀缩等级分类中的距离判别分析法[J] . 岩土工程学报, 2007, 29(3): 463-466.
[10] 余 颂, 陈善雄, 余 飞, 等. 膨胀土判别与分类的Fisher判别分析方法[J] . 岩土力学, 2007, 28(3): 499-504.
[11] 曾志雄, 田 海, 黄珏皓. 基于云模型的膨胀土胀缩等级分类[J] . raybet体育在线 院报, 2016, 33(2): 80-85.
[12] HUANG G B, ZHU Q Y, SIEW C K. Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks[C] ∥Proceedings of International Joint Conference on Neural Networks. Budapest, Hungary, July 25-29, 2004: 985-990.
[13] 裘日辉, 刘康玲, 谭海龙, 等. 基于极限学习机的分类算法及在故障识别中的应用[J] . 浙江大学学报(工学版), 2016, 50(10):1965-1972.
[14] 宋永东, 苏立君, 张崇磊, 等. 基于极限学习机的边坡可靠度分析[J] . raybet体育在线 院报, 2018, 35(8): 78-83.
[15] 李冬辉, 闫振林, 姚乐乐,等. 基于改进流形正则化极限学习机的短期电力负荷预测[J] . 高电压技术, 2016, 42(7):2092-2099.
[16] 朱永飞. 基于主成分分析的洪灾损失影响因子评估[J] . raybet体育在线 院报, 2015, 32(5):53-56.
[17] 周松林,茆美琴,苏建徽. 基于主成分分析与人工神经网络的风电功率预测[J] . 电网技术,2011,35(9):128-132.
[18] GB 50112—2013, 膨胀土地区建筑技术规范[S] . 北京: 中国建筑工业出版社, 2013.
[19] JTG D30—2004, 公路路基设计规范[S] . 北京: 人民交通出版社, 2015.

基金

国家自然科学基金项目(51374242,51404305)

PDF(1903 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map