地温示踪技术在地下水科学中的应用研究进展

董林垚, 陈建耀, JunShimada, 尹政兴

raybet体育在线 院报 ›› 2018, Vol. 35 ›› Issue (12) : 39-45.

PDF(1926 KB)
PDF(1926 KB)
raybet体育在线 院报 ›› 2018, Vol. 35 ›› Issue (12) : 39-45. DOI: 10.11988/ckyyb.20170696
水资源与环境

地温示踪技术在地下水科学中的应用研究进展

  • 董林垚1, 陈建耀2, JunShimada3, 尹政兴4
作者信息 +

Research Progress of Heat as a Tracer to Interpret Scientific Problems in Hydrogeology

  • DONG Lin-yao1, CHEN Jian-yao2, Jun Shimada3, YIN Zheng-xing4
Author information +
文章历史 +

摘要

对含水层流场与温度场耦合作用原理及地温示踪技术在地下水科学中的应用进行评述,总结了地温示踪技术在前沿地下水科学中的应用进展:①探究地表暖化-地下水流动对地温的影响;②计算含水层水文地质参数;③解析滨海含水层地下水循环过程。温度示踪法具有低成本、无污染、易于连续观测等优点,在地下水科学研究中具有广阔的前景,但利用温度示踪技术解析地下水科学问题目前仅适用于各向同性含水层,关于地下水气相和固相的交互过程中温度变化的研究亟待加强。

Abstract

The theory and application of heat as a tracer to interpret groundwater flowing was reviewed in this paper. The application of heat tracer in the frontier groundwater science was summarized as following: (1) interpretation of the impact of surface warming and groundwater flowing to subsurface temperature; (2) calculation of hydrogeological parameters; (3) investigation on groundwater circulation in coastal aquifer. As a tracer with low expense, no pollution and easy to be observed, heat can be applied widely in the field of subsurface hydrology and engineering. However, the technique of heat as a tracer can only be applied into the interpretation of groundwater problems in homogeneous aquifers. Research on the interaction between solid and atmosphere in subsurface environment should be enhanced.

关键词

地下水 / 流场 / 温度场 / 示踪技术 / 含水层 / 水文地质参数

Key words

groundwater / flow line / thermal regime / heat tracer technique / aquifer / hydrogeological parameters

引用本文

导出引用
董林垚, 陈建耀, JunShimada, 尹政兴. 地温示踪技术在地下水科学中的应用研究进展[J]. raybet体育在线 院报. 2018, 35(12): 39-45 https://doi.org/10.11988/ckyyb.20170696
DONG Lin-yao, CHEN Jian-yao, Jun Shimada, YIN Zheng-xing. Research Progress of Heat as a Tracer to Interpret Scientific Problems in Hydrogeology[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(12): 39-45 https://doi.org/10.11988/ckyyb.20170696
中图分类号: P641   

参考文献

[1] 刘昌明,赵彦琦.中国实现水需求零增长的可能性探讨[J] .中国科学院院刊,2012, 27(4):439-446.
[2] GREEN T R,TANIGUCHI M, KOOI H, et al. Beneath the Surface of Global Change: Impacts of Climate Change on Groundwater[J] . Journal of Hydrology, 2011, 405: 532-560.
[3] TAYLOR R G, SCHANLON B, DÖLL P, et al. Ground Water and Climate Change[J] . Nature Climate Change, 2013, 3: 322-329.
[4] 刘昌明.建设节水型社会缓解地下水危机[J] .中国水利,2007, 15(1):10-13.
[5] 郝 华.我国城市地下水污染状况与对策研究[J] .水利发展研究, 2004, 4(3):23-25.
[6] 陈建耀,王 亚,张洪波,等.地下水硝酸盐污染研究综述[J] .地理科学进展, 2006, 25(1):34-44.
[7] TANIGUCHI M, BURNETT W C, CABLE J E, et al. Investigation of Submarine Groundwater Discharge[J] . Hydrological Processes, 2002, 16: 2115-2129.
[8] 钱家忠,吴剑锋,朱学愚,等.地下水资源评价与管理数学模型的研究进展[J] .科学通报, 2001, 46(2):99-104.
[9] 吴志伟,宋汉周.地下水温度示踪理论与方法研究进展[J] .水科学进展, 2011, 22(5):733-740.
[10] TANIGUCHI M, SHIMADA J, TANAKA T et al. Disturbances of Temperature-Depth Profiles due to Surface Climate Change and Subsurface Water Flow: 1. An Effect of Linear Increase in Surface Temperature Caused by Global Warming and Urbanization in Tokyo, Metropolitan Area, Japan[J] . Water Resource Research, 1999, 35(5): 1507-1517.
[11] 马 瑞,董启明,孙自永,等.地表水与地下水相互作用的温度示踪与模拟研究[J] .地质科技情报, 2013, 32(2):131-137.
[12] 王 钧,黄尚瑶,黄歌山,等. 中国南部地温分布的基本特征[J] . 地质学报, 1986,(3):85-98.
[13] ANDERSON M P. Heat as a Ground Water Tracer[J] . Ground Water, 2005, 43(6): 951-968.
[14] POLLACK H N, HUANG S. Climate Reconstruction from Subsurface Temperatures[J] . Annual Review of Earth and Planetary Science, 2000, 28(1): 339-365.
[15] POLLACK H N, HUANG S, SHEN P. 1998. Climate Change Record in Subsurface Temperatures: A Global Perspective[J] . Science, 1998, 282(5387): 279-281.
[16] HUANG S,POLLACK H N,SHEN P.Temperature Trends over the Past Five Centuries Reconstructed from Borehole Temperatures[J] . Nature, 2000, 403: 756-758.
[17] CARSLAW H S, JAEGER J C. Conduction of Heat in Solids[M] . Clarendon: Oxford University Press, 1959.
[18] BIRCH F. The Effects of Pleistocene Climatic Variations upon Geothermal Gradients[J] . Journal de Physique IV, 2003, 110(9):411-416.
[19] HARRIS R N, CHAPMAN D S. Geothermics and Climate Change 1. Analysis of Borehole Temperatures with Emphasis on Resolving Power[J] . Journal of Geophysical Research Solid Earth, 1998, 103(B4):7363-7370.
[20] HARRIS R N, CHAPMAN D S. Geothermics and Climate Change 2. Joint Analysis of Borehole Temperature and Meteorological Data[J] . Journal of Geophysical Research Solid Earth, 1998, 103(B4):7371-7383.
[21] TANIGUCHI M, WILLIAMSON D R, PECK A J. Disturbances of Temperature-depth Profiles due to Surface Climate Change and Subsurface Water Flow: 2. An Effect of Step Increase in Surface Temperature Caused by Forest Clearing in Southwest Western Australia[J] . Water Resource Research, 1999, 35(5): 1519-1529.
[22] TANIGUCHI M, UEMURA T, JAGO-ON K. Combined Effects of Urbanization and Global Warming on Subsurface Temperature in Four Asian Cities[J] . Vadose Zone Journal, 2007, 6: 591-596.
[23] STALLMAN R W. Computation of Ground-water Velocity from Temperature Data[J] . USGS Water Supply Paper, 1963, 1544:36-46.
[24] BREDEHOEFT J D, PAPADOPULOS I S. Rates of Vertical Groundwater Movement Estimated from the Earth’s Thermal Profile[J] . Water Resource Research, 1965, 1(2): 325-328.
[25] BOYLE J E, SALEEM Z A. Determination of Recharge Rates Using Temperature-depth Profiles in Wells[J] . Water Resources Research, 1979, 15(6): 1616-1622.
[26] TANIGUCHI M, TURNER J V, SMITH A J. Evaluation of Groundwater Discharge Rates from Subsurface Temperature in Cockburn Sound, Western Australia[J] . Biogeochemistry, 2003, 66: 111-124.
[27] ANIBAS C, FLECKENSTEIN J H, VOLZE N, et al. Transient or Steady-state? Using Vertical Temperature Profiles to Quantify Groundwater-Surface Water Exchange[J] . Hydrological Processes, 2009, 23: 2165-2177.
[28] 朱静思, 束龙仓, 鲁程鹏. 基于热追踪方法的河道垂向潜热通量的非均质性研究[J] . 水利学报, 2013, 44(7):818-825.
[29] SILLIMAN S E, RAMIREZ J, MCCABE R L. Quantifying Down Flow Through Creek Sediments using Temperature Time Series: One Dimensional Solution Incorporating Measured Surface Temperature[J] . Journal of Hydrology, 1995, 167(1/2/3/4): 99-119.
[30] DOMENICO P A, PALCIAUSKAS V V. Theoretical Analysis of Forced Convective Heat Transfer in Regional Ground-water Flow[J] . Geology Society of America Bulletin, 1973, 84: 3803-3813.
[31] TANIGUCHI M, SHIMADA J, UEMURA T.Transient Effects of Surface Temperature and Groundwater Flow on Subsurface Temperature in Kumamoto Plain, Japan[J] . Physics and Chemistry of the Earth, 2003, 28: 477-486.
[32] TAYLOR C A,STEFAN H G.Shallow Groundwater Temperature Response to Climate Change and Urbanization[J] . Journal of Hydrology, 2009, 375: 601-612.
[33] KURYLYK B L, MACQUARRIE K T B. A New Analytical Solution to Assess the Impacts of Climate Change on Subsurface Temperature[J] . Hydrological Processes, 2014, 28(7): 3161-3172.
[34] FERGUSON G, WOODBURY A D. Subsurface Heat Flow in an Urban Environment[J] . Journal of Geophysical Research, 2004, 109(B02402),doi:10.1029/2003JB002715.
[35] FERGUSON G, BELTRAMI H, WOODBURY A D. Perturbation of Ground Surface Temperature Reconstructions by Groundwater Flow[J] . Geophysical Research Letters, 2006, 33(L13708): doi:10.1029/2006GL026634.
[36] BENSE V, BELTRAMI H. Impact of Horizontal Groundwater Flow and Localized Deforestation on the Development of Shallow Temperature Anomalies[J] . Journal of Geophysical Research, 2007, 112(F04015),doi:10.1029/2006JF000703.
[37] SCHARDTJ C. Numerical Heat and Fluid-flow Modeling of the Panorama Volcanic-Hosted Massive Sulfide District, Western Australia[J] . Economic Geology, 2005, 100: 547-566.
[38] YANG J. Full 3-D Numerical Simulation of Hydrothermal Fluid Flow in Faulted Sedimentary Basins: Example of the McArthur Basin, Northern Australia[J] . Journal of Geochemical Exploration, 2006, 89: 440-444.
[39] KESHARI A K, KOO M H. A Numerical Model for Estimating Groundwater Flux from Subsurface Temperature Profiles[J] . Hydrological Processes, 2007, 21: 3440-3448.
[40] NAM Y, OOKA R. Numerical Simulation of Ground Heat and Water Transfer for Groundwater Heat Pump System Based on Real-scale Experiment[J] . Energy and Buildings, 2010, 42: 69-75.
[41] TANIGUCHI M, UEMURA T. Effects of Urbanization and Groundwater Flow on the Subsurface Temperature in Osaka, Japan[J] . Physics of the Earth and Planetary Interiors, 2005, 152(4): 305-313.
[42] TANIGUCHI M. Anthropogenic Effects on Subsurface Temperature in Bangkok[J] . Climate of the Past Discussions, 2006, 2: 831-846.
[43] ABE H, TANG C, KONDOH A. Effect of Urban Aquifer Exploitation on Subsurface Temperature and Water Quality[J] . Groundwater, 2014, 52(Sup.1): 186-194.
[44] DONG L.Analytical Study to Understand Groundwater Flow System and Surface Warming Effect Using Subsurface Thermal Regimes—A Case Study in Kumamoto Area, Japan[D] . Kumamoto, Japan: Kumamoto University,2014.
[45] 李竞生. 含水层参数识别方法[M] . 北京:地质出版社, 2003.
[46] 周志芳, 汤瑞凉, 汪 斌. 基于抽水试验资料确定含水层水文地质参数[J] . 河海大学学报(自然科学版), 1999, 27(3):5-8.
[47] POETER E P, HILL M C. Inverse Models: A Necessary Next Step in Ground-Water Modeling[J] . Ground Water, 1997, 35(35):250-260.
[48] BRAVO H R, JIANG F, HUNT R J. Using Groundwater Temperature Data to Constrain Parameter Estimation in a Groundwater Flow Model of a Wetland System[J] . Water Resources Research, 2002, 38(8):1-14.
[49] MA R, ZHENG C, ZACHARA J M, et al. Utility of Bromide and Heat Tracers for Aquifer Characterization Affected by Highly Transient Flow Conditions[J] . Water Resources Research, 2012, 48:144-151.
[50] GIAMBASTIANI B M S, COLOMBANI N, MASTROCICCO M. Limitation of Using Heat as a Groundwater Tracer to Define Aquifer Properties: Experiment in a Large Tank Model[J] . Environmental Earth Sciences, 2013, 70(2):719-728.
[51] IRVINE D J, SIMMONS C T, WERNER A D, et al. Heat and Solute Tracers: How Do They Compare in Heterogeneous Aquifers? [J] . Ground Water, 2013, 53(Sup.1):10-20.
[52] WU G, SHU L, LU C, et al. The Heterogeneity of 3-D Vertical Hydraulic Conductivity in a Streambed[J] . Hydrology Research, 2016, 47(1):15-26.
[53] 李海龙,万 力,焦赳赳.海岸带水文地质学研究中的几个热点问题[J] .地球科学进展, 2011, 26(7): 685-694.
[54] FREEZE R A, CHERRY J A. Groundwater[M] . Prentice Hall: Englewood Cliff, 1979.
[55] REILLY T E, GOODMAN A S. Analysis of Saltwater Upcoming Beneath a Pumping Well[J] . Journal of Hydrology, 1987,89: 169-204.
[56] TANIGUCHI M. Evaluations of the Saltwater-groundwater Interface from Borehole Temperature in a Coastal Region[J] . Geophysical Research Letters, 2000, 27(5): 713-716.

基金

国家自然科学基金项目(41501037)

PDF(1926 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map