不同掺量粉煤灰混凝土热膨胀系数的确定

赵志方, 陈建平, 王卫仑

raybet体育在线 院报 ›› 2018, Vol. 35 ›› Issue (12) : 143-147.

PDF(1826 KB)
PDF(1826 KB)
raybet体育在线 院报 ›› 2018, Vol. 35 ›› Issue (12) : 143-147. DOI: 10.11988/ckyyb.20180019
水工结构与材料

不同掺量粉煤灰混凝土热膨胀系数的确定

  • 赵志方1, 陈建平1, 王卫仑2
作者信息 +

Determination of Thermal Expansion Coefficient of Concrete Dosed with Different Volumes of Fly Ash

  • ZHAO Zhi-fang1, CHEN Jian-ping1, WANG Wei-lun2
Author information +
文章历史 +

摘要

为解决标准试验方法难以测定大坝混凝土早期热膨胀系数的难题,采用温度-应力试验,以等效龄期为桥梁计算得到粉煤灰掺量分别为35%,80%的2种常态大坝混凝土的温度差与应变差曲线,并分段进行线性拟合,确定粉煤灰混凝土的早龄期热膨胀系数。结果表明:①2种粉煤灰混凝土在硬化初期热膨胀系数值在(20~30)×10-6/℃范围内变化,而后期则稳定在(4.6~10.0)×10-6/℃;②高掺粉煤灰混凝土的热膨胀系数低于基准混凝土(即35%粉煤灰掺量混凝土),更有利于大坝混凝土的抗裂;③基于已确定的热膨胀系数,建立热膨胀系数模型,可较好地反映混凝土早期热膨胀系数发展规律,并用于计算2种混凝土的温度变形。

Abstract

In an attempt to overcome the difficulty of determining the thermal expansion coefficient of dam concrete at early age by standard test method, temperature-stress test (TST) was conducted. The early-age thermal expansion coefficients of fly ash concrete were determined by segmented linear fitting of the temperature difference and strain difference curves of conventional dam concrete dosed with 35% and 80% fly ash volumes. Results demonstrated that (1) the thermal expansion coefficients of the two kinds of concrete varied in the range of (20~30)×10-6 /℃ at the stage of initial hardening, and tended to be stable in the range of (4.6~10)×10-6/℃ at late stage. (2) The thermal expansion coefficient of high-volume fly ash concrete (80% fly ash concrete) is lower than that of reference concrete (35% fly ash concrete), which is conducive to crack resistance of dam concrete. (3) On the basis of the determined thermal expansion coefficients, a model of thermal expansion coefficient is proposed to better reflect the development law of thermal expansion coefficient at early age and to calculate the temperature deformations of the two kinds of concrete.

关键词

高掺量粉煤灰混凝土 / 热膨胀系数 / 温度-应力试验 / 等效龄期 / 早龄期

Key words

high-volume fly ash concrete / thermal expansion coefficient / temperature-stress test (TST) / equivalent age / early age

引用本文

导出引用
赵志方, 陈建平, 王卫仑. 不同掺量粉煤灰混凝土热膨胀系数的确定[J]. raybet体育在线 院报. 2018, 35(12): 143-147 https://doi.org/10.11988/ckyyb.20180019
ZHAO Zhi-fang, CHEN Jian-ping, WANG Wei-lun. Determination of Thermal Expansion Coefficient of Concrete Dosed with Different Volumes of Fly Ash[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(12): 143-147 https://doi.org/10.11988/ckyyb.20180019
中图分类号: TU528   

参考文献

[1] EMBORG M. Development of Mechanical Behavior at Early Ages[C] ∥SPRINGENSCHMID R. Thermal Cracking in Concrete at Early Ages. Munich: E & FN SPON, 1995: 77-148.
[2] MIAO B, CHAALLAL O, PERRATON D, et al. On-site Early Age Monitoring of High Performance Concrete Columns[J] . ACI Materials Journal, 1993, 90: 415-420.
[3] MITCHELL D, KHAN A A,COOK W D. Early Age Properties for Thermal and Stress Analyses during Hydration[M] ∥SKALNY J, MINDESS S. Material Science of Concrete. USA: John Wiley & Sons, 2001: 265-305.
[4] 陈 波,丁建彤,蔡跃波,等.基于温度-应力试验的混凝土早龄期应变分离及热膨胀系数计算[J] . 水利学报,2016,47(4):560-565.
[5] WITTMANN F, LUKAS J. Experimental Study of Thermal Expansion of Harden Cement Paste[J] . Materials and Structures, 1974, 7(4): 247-252.
[6] American Concrete Institute Committee. ACI 232.3R-14, Report on High-volume Fly Ash Concrete for Structural Applications[R] . USA: ACI, 2014.
[7] 赵志方,李 超,张振宇,等. 超高掺量粉煤灰大坝混凝土早龄期抗裂性研究[J] . 水力发电学报,2016,35(7):112-119.
[8] 赵志方, 余申江, 张振宇,等.高掺量粉煤灰水工大坝混凝土配合比设计方法评述[J] . 中国水运,2013,13(2): 172-173.
[9] ZHAO Z F, MAO K K, JI S W, et al. Adiabatic Temperature Rise Model of Ultra-high-volume Fly Ash Conventional Dam Concrete and FEM Simulation of the Temperature History Curve[C] ∥Proceedings of the 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures. ASCE,Vienna, Austria,September 21-23,2015:1410-1419.
[10] 蔡跃波, 丁建彤, 陈 波, 等. 基于温度-应力试验机的大坝混凝土抗裂性综合评价[J] .东南大学学报(自然科学版), 2010, 40(1): 171-175.
[11] TURCRY P, LOUKILI A, BARCELO L, et al. Can the Maturity Concept be Used to Separate the Autogenous Shrinkage and Thermal Deformation of a Cement Paste at Early Age[J] . Cement and Concrete Research, 2002, 32(9): 1443-1450.
[12] VIVIANI M, GLISIC B, SMITH I F C. Separation of Thermal and Autogenous Deformation at Varying Temperatures using Optical Fiber Sensors[J] . Cement and Concrete Composites, 2007, 29(6) : 435-447.
[13] NEVILLE A M. Properties of Concrete[M] . New York: John Wiley & Sons Inc., 1996.
[14] 高桂波,钱春香,朱晨峰,等. 粉煤灰对混凝土热膨胀系数的影响[J] . 东南大学学报(自然科学版),2006, 36(增):185-190.
[15] 钱春香,朱晨峰. 掺和料及引气剂对水泥混凝土热膨胀系数的影响[J] . 建筑材料学报,2009, 12(3): 310-314.
[16] 康秋波, 白 银, 陈 波,等. 基于温度-应力试验的混凝土抗裂性仿真分析方法[J] . 混凝土,2012, (3):21-24.
[17] 李 飞.混凝土早期约束应力发展与松弛过程研究[D] . 北京:清华大学,2009.

基金

国家自然科学基金项目(51479178,51879235);浙江省自然科学基金项目(LY14E090006);广东省滨海土木工程耐久性重点实验室开放基金(GDDCE15-01)

PDF(1826 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map