针对渗流条件下的深埋富水隧道围岩稳定性问题,依托老獾顶隧道工程,对DK16+110-DK16+130段进行现场监测,采用流固耦合理论与反演理论,基于FLAC3D数值软件对该区段开挖过程进行数值模拟,与监测结果进行比较分析。研究结果表明:下左台阶开挖后两帮孔隙水压力梯度变化非常快,在仰拱开挖后应力与孔隙水压力变化趋于平稳;通过对孔隙水压力与应力的比值分析得到隧道围岩开挖风险预测函数α,确定了该地质条件下掌子面最危险开挖深度;当隧道围岩开挖风险预测函数值α>4.51时,掌子面极易发生失稳,需要对其排水降压;预测函数具有较高精度,为后续工程提供参考。
Abstract
To study the surrounding rock stability of deep buried water-rich tunnel in the presence of seepage, we conducted numerical simulation of the excavation process of a tunnel project in FLAC3D in consideration of fluid-solid coupling, and further compared the simulation result with field monitoring result. The comparison revealed that the gradient of pore water pressure changed rapidly after the left bottom sidestep was excavated, indicating that water burst would probably occur at both sides along with tunnel excavation; the stress and pore water pressure tended to be stable after the excavation of inverted arch. Furthermore, we proposed an excavation risk function according to α, which is defined as the ratio of pore water pressure to stress, to determine the most dangerous depth of working face excavation. When α is larger than 4.51, the working face is extremely prone to suffer from instability, indicating that drainage is required. The predicative function is of high accuracy, hence could offer reference for future projects.
关键词
隧道工程 /
流固耦合 /
反演理论 /
现场监测 /
数值模拟 /
预测函数
Key words
tunneling engineering /
fluid-solid coupling /
inversion theory /
field monitoring /
numerical simulation /
prediction function
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]KASPER T, MESCHKCE G.A Numerical Study of the Effect of Soil and Grout Material Properties and Cover Depth in Shield Tunneling[J].Computers and Geotechnics,2006,33 (4):234-247.
[2] 姚多喜,鲁海峰.煤层底板岩体采动渗流场一应变场耦合分析[J].岩石力学与工程学报,2012,31(增1):2738-2744.
[3] 邓宗伟,伍振志,曹 浩,等.基于流固耦合的泥水盾构隧道施工引发地表变形[J].中南大学学报(自然科学版),2013,44(2):785-791.
[4] 盛素玲,熊晓晖,熊德敏.基于流固耦合的坡度对TBM斜井围岩的影响研究[J].防灾减灾工程学报,2017,37(2):1-8.
[5] 李术才,王 凯,李利平,等.海底隧道新型可拓展突水模型试验系统的研制及应用[J].岩石力学与工程学报,2014,33(12):2409-2418.
[6] 齐 春,何 川,封 坤.考虑流固耦合效应的水下盾构隧道受力特性[J].西南交通大学学报,2015,50(2):306-311.
[7] 李 亮,杜修力,崔智谋,王相宝.基于流固耦合两相介质动力模型的水下隧道结构地震反应研究[J].应用基础与工程科学学报,2015,23(4):763-772.
[8] 宋锦虎,陈坤福,马 元,等.波动推力引起的超孔压对开挖面稳定性的影响分析[J].岩石力学与工程学报,2016,35(增1):3353-3364.
[9] 李廷春,吕连勋,段会玲,等.深埋隧道穿越富水破碎带围岩突水机理[J].中南大学学报(自然科学版),2016,47(10):3469-3476.
[10]邹育麟,何 川,胡雄玉,等.富水区隧道合理防排水型式及注浆加固参数研究[J].防灾减灾工程学报,2014,34(4):485-491.
[11]汪亚莉,许 模,张强,等.云南洱海东侧引水隧道地下水环境负效应探讨[J].raybet体育在线
院报,2016,33(2):14-18.
[12]姚华彦,邵 迅,张振华,等.基于破坏接近度的地铁隧道流固耦合稳定性分析[J].应学学报,2016:33(6):1057-1064.
[13]徐干成,自洪才,郑颖人,等.地下工程支护结构[M].北京:中国水利水电出版社,2002: 145-196.
[14]潘昌实.隧道力学数值方法[M].北京:中国铁道出版社,1995:95-136.
[15]白明洲,许兆义,时 静.复杂地质条件下浅埋暗挖地铁施工期地面沉降量FLAC3D分析[[J].岩石力学与工程学报,2006, 25(增2):4254-4259.
基金
国家自然科学基金委员会-神华集团有限公司煤炭联合基金资助项目(51174268)