以摩擦学和灰色系统为理论基础,建立了以速率为参量的滑坡GM(1,1)时间预报模型,推导出滑坡时间预报公式,结合黄茨滑坡、新滩滑坡进行了预报分析,并与传统的以位移为参量的GM(1,1)、Verhulst预报模型预报结果进行对比。结果表明:以速率为参量的GM(1,1)滑坡预报模型能够提前预报滑坡;与传统的以位移为参量的GM(1,1)相比,预报时间更接近滑坡实际发生时间;与传统的以位移为参量的Verhulst模型相比,以速率为参量的GM(1,1)模型不仅能够提前预报滑坡,而且能够更加准确地反映滑坡的位移变化趋势。因此,建议采用以速率为参量的GM(1,1)滑坡时间预报模型对滑坡进行预报分析。
Abstract
With tribology and grey system as theoretic basis, a GM(1,1) model of landslide time prediction based on velocity parameter is established, and the landslide time forecast formula is deduced. Huangci landslide and Xintan landslide are taken as case study. The prediction result is compared with those obtained by traditional GM(1,1) model based on displacement parameter and Verhulst model. Results conclude that compared with the GM(1,1) model based on displacement parameter, the GM(1,1) model based on velocity parameter could predict landslide in advance, with the time closer to the factual landslide occurrence time; compared with traditional Verhulst model based on displacement parameter, the GM(1,1) model based on velocity parameters could reflect the change trend of landslide more accurately in addition to prediction in advance. Therefore, the GM(1,1) model based on velocity parameter is recommended for landslide time prediction.
关键词
滑坡预报 /
GM(1, 1)模型 /
速率参量 /
摩擦学 /
灰色系统理论 /
Verhulst预报模型
Key words
landslide time prediction /
GM (1,1) model /
velocity /
tribology /
grey systematic theory /
Verhulst model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]SAITO M. Forecasting Time of Slope Failure by Tertiary Creep[C]∥Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering.Mexico City.1969:677-683.
[2] FUKUZONO T. Recent Studies on Time Prediction of Slope Failure [J].Landslide News,1990,(4):9-12.
[3] 陈明东,王兰生.新滩滑坡的灰色预报分析[C]∥新滩滑坡讨论会文集. 北京:科学出版社,1988:1-18.
[4] 林志伟,丁 强. Verhulst模型在滑坡监测预报中的应用[J].山西建筑,2016,42(33):92-93.
[5] 贺小黑,王思敬,肖锐铧,等.Verhulst 滑坡预测预报模型的改进及其应用[J].岩土力学, 2013,34(1):354-364.
[6] 范留明,耿鹏超. 突变理论在边坡工程应用的研究进展[J]. 地球科学进展,2015,30(11):1268-1277.
[7] 贺小黑,王思敬,肖锐铧,等.协同滑坡预测预报模型的改进及其应用[J].岩土工程学报,2013,35(10):1839-1848.
[8] 叶 超,郝付军.基于支持向量机和BP神经网络的滑坡变形复合式预测[J].水土保持通报,2016,36(2):332-337.
[9] HONG Hao-yuan,PRADHAN B,XU Chong,et al. Spatial Prediction of Landslide Hazard at the Yihuang Area (China) Using Two-class Kernel Logistic Regression,Alternating Decision Tree and Support Vector Machines[J]. Catena,2015,133: 266-281.
[10]OZDEMIR A,ALTURAL T.A Comparative Study of Frequency Ratio,Weights of Evidence and Logistic Regression Methods for Landslide Susceptibility Mapping: Sultan Mountains,SW Turkey [J]. Journal of Asian Earth Sciences,2013,64:180-197.
[11]WANG L J,SAWADA K,MORIGUCHI S. Landslide Susceptibility Analysis with Logistic Regression Model Based on FCM Sampling Strategy[J]. Computers & Geosciences,2013,57: 81 - 92.
[12]余坤勇,姚 雄,邱祈荣,等. 基于随机森林模型的山体滑坡空间预测研究[J]. 农业机械学报,2016,47(10):338-345.
[13]姚大全,汤有标,李 杰,等. 活动断裂带上的黏滑和蠕滑标志及其研究意义J].地球物理学进展,1993,8(4):140-148.
[14]许 强. 滑坡的变形破坏行为与内在机理[J].工程地质学报,2012,20(2): 145-151.
[15]SKEMPTON A W. Residual Strength of Clays in Landslides, Folded Strata and the Laboratory[J]. Geotechnique, 1985, 35(1): 3-18.
[16]周本刚,张裕明. 汶川8.0级地震触发地质灾害发育分布规律研究[J]. 灾害学,2015(1):63-68.
[17]候康明,袁道阳.走滑断裂黏滑、蠕滑作用形成地貌特征[J].地震地质,1995,17(3):254-258.
[18]石北啸.岩质边坡滑动带细观结构分析与剪切试验研究[D].西安:西安理工大学,2009.
[19]李春波.摩擦振动(二):动摩擦力与滑动速度的关系[J].润滑与密封,1983,(6):49-55.
[20]许 强,曾裕平,钱江澎,等. 一种改进的切线角及对应的滑坡预警判据[J].地质通报,2009,28(4):501-505.
[21]王家鼎,张倬元.典型高速黄土滑坡群的系统工程地质研究[M].成都:四川科学技术出版社,1999:140-153.
[22]李 聪,朱杰兵,汪 斌,等.滑坡不同变形阶段演化规律与变形速率预警判据研究[J].岩石力学与工程学报,2016,35(7):1408-1416.
[23]赵书红,广 伟,袁海波,等. Vondrak平滑因子最佳确定方法及在时间比对数据中的应用[J]. 时间频率学报,2015,38(1):21-29.
基金
国家自然科学基金项目(51278437);广东省自然科学基金资助项目(2014A030313006);福建省自然科学基金资助项目(2015J01224)