为准确模拟平原湖区土地利用变化对排涝模数的影响,选取湖北省四湖流域螺山排区作为研究区,利用构建的SCS-MIKE11耦合模型计算不同时期土地利用类型下的排涝模数,分析土地利用变化对排涝模数的影响,并通过设置不同水旱比、水面率和地面硬化率的组合,对土地利用变化条件下的排涝措施进行模拟优化。结果表明:在10 a一遇的1 d暴雨3 d排除和3 d暴雨5 d排除的标准下, 2011年土地利用方式下求得的排涝模数比1994年求得的排涝模数大,分别增加了159.3%和33.6%;在保持水旱比和水面率不变的情况下,地面硬化率每增加1%,1 d和3 d暴雨下排涝模数分别增加0.005 m3/(s·km2)和0.003 m3/(s·km2);在保持水旱比和地面硬化率不变的情况下,水面率每增加1%,1 d和3 d暴雨下排涝模数分别减小0.016 m3/(s·km2)和0.012 m3/(s·km2);在保持水面率和地面硬化率不变的情况下,水旱比每增加0.1,1 d暴雨和3 d暴雨下排涝模数分别减小0.004 m3/(s·km2)和0.003 m3/(s·km2)。因此,除了增加排涝泵站的排涝流量外,减少地面硬化率(例如采用透水路面)、增加水面率和水旱比也是除涝减灾的有效措施。研究成果可为土地利用变化条件下平原湖区排涝模数的确定和排涝措施的制定提供参考。
Abstract
An SCS-MIKE11 coupled model was built to calculate the drainage moduli of plain lake area with different land-use patterns, and the effect of land-use change on drainage modulus was analyzed. Drainage measures in the background of land-use change were simulated and optimized by setting different combinations among proportions of paddy field to dry land area, water surface ratio, and ground hardening rate. The Luoshan drainage area in the Four-lake Drainage Basin in Hubei Province was selected as study area. Results revealed that the drainage modulus in 2011 was larger than that in 1994 under the same land-use pattern. According to the water logging control standards (10-year rainstorm for one day and draining for three days, 10-year rainstorm for three days and draining for five days), the drainage modulus increased by 159.3% and 33.6% respectively from 1994 to 2011. When water surface ratio and proportion of paddy field to dry land area kept unchanged, the drainage modulus under one-day rainstorm and three-day rainstorm increased by 0.005 m3/(s·km2) and 0.003 m3/(s·km2) respectively as ground hardening rate increased by 1%; the drainage modulus under one-day rainstorm and three-day rainstorm decreased by 0.016 m3/(s·km2) and 0.012 m3/(s·km2) as water surface ratio increased by 1% when ground hardening rate and proportion of paddy field to dry land area kept unchanged; the drainage modulus under one-day rainstorm and three-day rainstorm decreased by 0.004 m3/(s·km2) and 0.003 m3/(s·km2) as proportion of paddy field to dry land area increased by 0.1 when ground hardening rate and water surface ratio remained unchanged. Therefore, reducing the ground hardening rate by permeable pavement for example, and increasing the water surface ratio and proportion of paddy field to dry land area in addition to increasing the drainage discharge of pumping stations are effective measures of reducing waterlogging disaster loss. The research results could be used as a reference for reasonable determination of the drainage modulus and formulation of waterlogging control measures under the condition of land-use change in plain lake areas.
关键词
平原湖区 /
排涝模数 /
土地利用方式 /
SCS模型 /
MIKE11 模型
Key words
plain lake area /
drainage modulus /
land-use patterns /
SCS model /
MIKE11 model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 罗文兵,王修贵,罗 强,等. 四湖流域下垫面改变对排涝模数的影响[J]. 水科学进展,2014,25(2):275-281.
[2] 许 迪. 平原地区明渠排涝流量的两种计算方法[J]. 水利水电技术,1994,(11):52-55.
[3] 王 燕. 安徽省沿江圩区农田排涝模计算[J]. 水利经济,2000,(4):42-45.
[4] 左宝林. 中小圩口水利规划中排涝装机容量的计算[J]. 中国农村水利水电,2000,(9):32-33.
[5] 王国安,贺顺德,崔 鹏,等. 排涝模数法的基本原理和适用条件[J]. 人民黄河,2011,23(2):21-26.
[6] 刘 克,李同超,王 辉. 南四湖滨湖涝洼区排水模数比较分析[J]. 山东水利,2015, (7):7-8.
[7] 张建新,惠士博,谢森传. 利用降雨入渗产流分析原理和Nash单位线汇流方法进行排涝模数计算的研究[J]. 水文,2002,22(3):1-4.
[8] 周建康,朱春龙,罗国平. 太湖流域小圩区设计排涝模数计算[J]. 中国给水排水,2004,20(12):64-66.
[9] 周建康,朱春龙,罗国平. 平原圩区设计排涝流量与水面率关系研究[J]. 灌溉排水学报,2004,23(4):64-66.
[10]高 成,刘 俊,崔 韩,等. 城镇圩区排涝模数计算方法及其与河道调蓄库容关系研究[J]. 灾害学,2008,23(3):7-9.
[11]郭晓萌,罗 强,邵东国,等. 改进平湖法的时间步长对排涝模数的影响探讨[J]. 灌溉排水学报,2008,27(6):45-47.
[12]王国安,贺顺德,李荣容,等. 论推理公式的基本原理和适用条件[J]. 人民黄河,2010,32(12):1-4.
[13]王修贵,胡铁松,关洪林,等. 湖北省平原湖区涝渍灾害综合治理研究[M]. 北京:科学出版社,2009.
[14]卢少为,朱勇辉,魏国远,等. 平原湖区排涝模拟研究——以大通湖垸为例[J]. raybet体育在线
院报,2009,26(7):1-5.
[15]焦圆圆,徐向阳,徐红娟. 城市化圩区排涝模数与主要影响因素间的关系分析[J]. 中国给水排水,2008,24(4):40-43.
[16]郑雄伟,周 芬,侯云青,等. 城镇圩区排涝模数与合理水面率研究[J]. 水利水电技术,2012,43(9):90-94.
[17]段圣泼,吴玉柏,金 秋,等. 沿江圩区局部洼地排涝模数关联因子分析及应用[J]. 排灌机械工程学报,2016,34(3):238-243,250.
[18]陈峰云. 湖北省土地利用/覆被变化及其对自然环境要素的影响[D]. 武汉:华中农业大学,2009.
[19]PONCE V M, HAWKINS R H. Runoff Curve Number: Has It Reached Maturity?[J]. Journal of Hydrologic Engineering, 1996, 1(1):11-19.
[20]焦平金,许 迪,于颖多,等. 递推关系概化前期产流条件改进SCS模型[J]. 农业工程学报,2015,31(12):132-137.
[21]Danish Hydraulic Institute. MIKE11: A Modeling System of Rivers and Channels User Manual[K]. Denmark: Danish Hydraulic Institute, 2005.
[22]Danish Hydraulic Institute. MIKE11:A Modeling System for Rivers and Channels User-Guide Manual[K]. Denmark: Danish Hydraulic Institute, 2005.
[23]梁彬锐. MIKE11模型在沙井河片区防洪排涝工程中的应用[J]. 中国农村水利水电, 2008,(7):81-83.
[24]罗文兵,王修贵,史德亮,等. 平原湖区外江水位变化对排涝流量的影响[J]. 农业工程学报,2016,32(15):126-132.
[25]洪 林,罗 琳,江海涛. SCS模型在流域尺度水文模拟中的应用[J]. 武汉大学学报(工学版),2009,42(5):582-586.
[26]GB 50288—99,灌溉与排水工程设计规范[S]. 北京:中国计划出版社,1999.
[27]高俊峰,闻余华. 太湖流域土地利用变化对流域产水量的影响[J]. 地理学报,2002,57(2):194-200.
基金
国家自然科学基金项目(51509010,51379153,51309106);“十二五”国家科技支撑计划项目(2012BAD08B03);中央级公益性科研院所基本科研业务费资助项目(CKSF2016028/NS,CKSF2016039/NS ,CKSF2015024/NS);湖北省自然科学基金项目(2016CFB606)