基于SODA方法的HyMOD模型不确定性分析

李帅, 文小浩, 杜涛

raybet体育在线 院报 ›› 2017, Vol. 34 ›› Issue (9) : 6-13.

PDF(3077 KB)
PDF(3077 KB)
raybet体育在线 院报 ›› 2017, Vol. 34 ›› Issue (9) : 6-13. DOI: 10.11988/ckyyb.20160519
水资源与环境

基于SODA方法的HyMOD模型不确定性分析

  • 李帅1, 文小浩1, 2, 杜涛3
作者信息 +

Uncertainty Assessment of HyMOD Model Using the Method ofSimultaneous Optimization and Data Assimilation

  • LI Shuai1, WEN Xiao-hao1, 2, DU Tao3
Author information +
文章历史 +

摘要

为了改进水文建模过程中的不确定性处理,采用一种融合全局优化和数据同化(Simultaneous Optimization and Data Assimilation, SODA)的混合框架,对HyMOD模型进行了不确定性分析,并与经典SCEM-UA方法进行了比较。SODA方法具有如下特点①具备较高的参数搜索效率和寻优能力;②明确考虑包括输入、输出、参数以及模型结构在内的重要不确定性来源。SODA方法在渭河流域的实例应用结果表明与SCEM-UA方法相比,SODA方法不仅显著提高了预报精度,而且推求出了性质更为优良的预报区间。SODA方法的成功应用,有助于模型概念的改进及对水文系统功能的理解。

Abstract

To improve the treatment of uncertainty in hydrological modeling, a hybrid framework of simultaneous optimization and data assimilation (SODA) was adopt to assess the uncertainty of HyMOD model in this paper, and then was compared with the classical method of the Shuffled Complex Evolution Metropolis-UA (SCEM-UA). The strengths of the SODA can be described as follows (1) high parameter search efficiency and explorative capabilities; (2) explicit treatment of the various important sources of uncertainty (i.e., input, output, parameter and model structure uncertainties) associated with the application of hydrological models. The results of the SODA applied in the Weihe River Basin demonstrate that in comparison to the performances of SCEM-UA, the SODA could notably improve the streamflow prediction efficiency, and also could derive more accurate prediction interval. The successful application of the SODA is helpful to improving model concepts and understanding of the functioning of hydrological systems.

关键词

SODA / HyMOD模型 / 水文模型不确定性 / SCEM-UA / 集合卡尔曼滤波(EnKF)

Key words

simultaneous optimization and data assimilation (SODA) / HyMOD / hydrological modeling uncertainty / Shuffled Complex Evolution Metropolis-University of Arizona(SCEM-UA) / Ensemble Kalman Filter(EnKF)

引用本文

导出引用
李帅, 文小浩, 杜涛. 基于SODA方法的HyMOD模型不确定性分析[J]. raybet体育在线 院报. 2017, 34(9): 6-13 https://doi.org/10.11988/ckyyb.20160519
LI Shuai, WEN Xiao-hao, DU Tao. Uncertainty Assessment of HyMOD Model Using the Method ofSimultaneous Optimization and Data Assimilation[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(9): 6-13 https://doi.org/10.11988/ckyyb.20160519
中图分类号: P333   

参考文献

[1] 林凯荣, 陈晓宏. 基于FCM-SCEMUA的水文模型参数不确定性估计方法[J] . 水利学报,2010,41(10):1186-1192.
[2] DUAN Q, SOROOSHIAN S, GUPTA V. Effective and Efficient Global Optimization for Conceptual Rainfall-runoff Models[J] . Water Resources Research, 1992, 28(4): 1015-1031.
[3] KENNEDY J, EBERHART R. Particle Swarm Optimization[C] ∥IEEE. Proceedings of IEEE International Conference on Neural Networks (IV). Perth, Australia. November 27-December 1, 1995: 1942-1948.
[4] HOLLAND J H. Adaptation in Natural and Artificial Systems[M] . Ann Arbor: University of Michigan Press, 1975.
[5] BEVEN K, BINLEY A. The Future of Distributed Models: Model Calibration and Uncertainty Prediction[J] . Hydrological Process, 1992, 6(3): 279-298.
[6] 董磊华, 熊立华, 万 民. 基于贝叶斯模型加权平均方法的水文模型不确定性分析[J] . 水利学报, 2011, 42(9): 1065-1074.
[7] VRUGT J A, GUPTA H V, BOUTEN W, et al. A Shuffled Complex Evolution Metropolis Algorithm for Optimization and Uncertainty Assessment of Hydrologic Model Parameters[J] . Water Resources Research, 2003, 39(8), 1201, doi: 10.1029/2002WR001642.
[8] FREER J, BEVEN K, AMBROISE B. Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach[J] . Water Resources Research, 1996, 32(7): 2161-2173.
[9] VRUGT J A, BOUTEN W, WEERTS A H. Information Content of Data for Identifying Soil Hydraulic Parameters from Outflow Experiment[J] . Soil Science Society of America Journal, 2001, 65(1): 19-27.
[10] VRUGT J A, GUPTA H V, BASTIDAS L A, et al. Effective and Efficient Algorithm for Multi-objective Optimization of Hydrological Models[J] . Water Resources Research,2003,39(8),1214,doi:10.1029/2002WR001746.
[11] 卫晓婧, 熊立华, 万 民, 等. 融合马尔科夫链-蒙特卡洛算法的改进通用似然不确定性估计方法在流域水文模型中的应用[J] . 水利学报, 2009, 40(4): 464-473.
[12] 王 文, 寇小华.水文数据同化方法及遥感数据在水文数据同化中的应用进展[J] . 河海大学学报(自然科学版), 2009, 37(5): 556-562.
[13] RIECHLE R H, MCLAUGHLIN D B, ENTEKHABI D. Hydrologic Data Assimilation with the Ensemble Kalman Filter[J] . Monthly Weather Review, 2002, 130(1):103-114.
[14] MORADKHANI H, SOROOSHIAN S, GUPTA H V, et al. Dual State-parameter Estimation of Hydrological Models Using Ensemble Kalman Filter[J] . Advances in Water Resources, 2005, 28(2): 135-147.
[15] WANG D, CHEN Y, CAI X. State and Parameter Estimation of Hydrologic Models Using the Constrained Ensemble Kalman Filter[J] . Water Resources Research, 2009, 45(11), W11416, doi: 10.1029/2008WR007401.
[16] WEERTS A H, EL SERAFY G Y H. Particle Filtering and Ensemble Kalman Filtering for State Updating with Hydrological Conceptual Rainfall-runoff Models[J] . Water Resources Research, 2006, 42(9), W09403, doi: 10.1029/2005WR004093.
[17] SU H, YANG Z, NIU G, et al. Enhancing the Estimation of Continental-scale Snow Water Equivalent by Assimilating MODIS Snow Cover with the Ensemble Kalman Filter[J] . Journal of Geophysical Research, 2008, 113, D08120, doi: 10.1029/2007JD009232.
[18] VRUGT J A, DIKS C G H, GUPTA H V, et al. Improved Treatment of Uncertainty in Hydrologic Modeling: Combining the Strengths of Global Optimization and Data Assimilation[J] . Water Resources Research, 2005, 41(1), W01017, doi: 10.1029/2004WR003059.
[19] XIONG L, WAN M, WEI X, et al. Indices for Assessing the Prediction Bounds of Hydrological Models and Application by Generalized Likelihood Uncertainty Estimation[J] . Hydrological Sciences Journal, 2009, 54(5): 852-871.
[20] HASTINGS W K. Monte-Carlo Sampling Methods Using Markov Chains and Their Applications[J] . Biometrika, 1970, 57(1): 97-109.
[21] METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equations of State Calculations by Fast Computing Machines[J] . Journal of Chemical Physics, 1953,21(6):1087-1092.
[22] 曹飞凤, 严齐斌, 张世强. 改进SCEM-UA算法在概念性降雨-径流模型参数优选中的应用[J] . 系统工程理论与实践, 2012, 32(6): 1362-1368.
[23] 陈南祥, 甘 甜, 杜青辉. SCEM-UA优化算法在水文频率分析中的应用[J] . 西北农林科技大学学报(自然科学版), 2011, 39(8): 210-214.
[24] 南统超, 吴吉春.集合卡尔曼滤波估计水文地质参数的局域化修正[J] . 水科学进展, 2010, 21(5): 613-621.
[25] LIU Y, GUPTA H V. Uncertainty in Hydrologic Modeling: Toward an Integrated Data Assimilation Framework[J] . Water Resources Research, 2007, 43, W07401, doi: 10.1029/2006WR005756.
[26] NASH J E, SUTCLIFFE J V. River Flow Forecasting Through Conceptual Models[J] . Journal of Hydrology, 1970, 10(3): 282-290.
[27] 秦 涛, 汪 妮,解建仓, 等. 渭河流域宝鸡段水体纳污能力及总量控制定额分析计算[J] . raybet体育在线 院报, 2009, 26(8): 20-23.
[28] MOORE R J. The Probability-distributed Principle and Runoff Production at Point and Basin Scales[J] . Hydrological Sciences Journal, 1985, 30(2): 273-297.
[29] MORADKHANI H, HSU K L, GUPTA H, et al. Uncertainty Assessment of Hydrologic Model States and Parameters: Sequential Data Assimilation Using the Particle Filter[J] . Water Resources Research, 2005, 41(5), W05012, doi: 10.1029/2004WR003604.
[30] VRUGT J A, TER BRAAK C J F, CLARK M P, et al. Treatment of Input Uncertainty in Hydrologic Modeling: Doing Hydrology Backward with Markov Chain Monte Carlo Simulation[J] . Water Resources Research, 2008, 44(12), W00B09, doi: 10.1029/2007WR006720.
[31] EVENSEN G. Sequential Data Assimilation with a Nonlinear Quasi-geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics[J] . Journal of Geophysical Research, 1994, 99(C5): 10143-10162.
[32] GEORGAKAKOS K P. A Generalized Stochastic Hydrometeorological Model for Flood and Flash Flood Forecasting: 2. Case Studies[J] . Water Resources Research, 1986, 22(13): 2096-2106.
[33] SL 250—2000,水文情报预报规范[S] . 北京: 中国水利水电出版社, 2000.

基金

国家重点研发计划项目(2016YFC0402306-01);国家自然科学基金项目(51539009)

PDF(3077 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map