混凝土界面微结构物相特征是影响混凝土宏观性能重要因素,其主要构成物相CH晶体、孔隙和C-S-H凝胶的表征方法及其演变规律一直是研究的重点和热点。总结了混凝土界面过渡区主要构成物相的表征方法及其优缺点,并建议采用SAXS结合MIP的方法研究界面在微观和细观尺度的孔结构、XRD方法研究界面区域CH的取向性、FTIR和NMR分别对界面C-S-H凝胶做定性和定量分析。分析发现水胶比减小、养护龄期增长、活性掺和料的掺入、渗透性较好和尺寸较大的骨料都会导致界面CH取向指数和孔隙率减小,界面C-S-H凝胶含量会随着养护龄期延长和活性掺和料掺入呈现出有规律的增长。
Abstract
Microstructure phase features in interfacial transition zone of concrete are important for concrete's macroscopic properties. Methods of representing CH crystal, pore and C-S-H gel and evolution law are always research hotspots. In this article, we summarized the representation methods for the main phases in interfacial transition zone of concrete and their advantages and disadvantages.We also recommend to employ SAXS in association with MIP method for studying the pore structure at microscopic and mesoscopic scales for the interface, XRD method for the orientation of CH in the interface region,FTIR for qualitative analysis on interface C-S-H gel and NMR for quantitative analysis on interface C-S-H gel. Results show that decreasing of water to binder ratio, increasing of curing age, blending of active admixture, good permeability and large size of aggregate all lead to the decreasing of porosity and CH orientation index in the interface. Moreover, the content of interface C-S-H gel increases with the growth of curing age and the blending of active admixtures.
关键词
界面过渡区 /
微结构 /
孔隙 /
CH晶体 /
C-S-H凝胶
Key words
interfacial transition zone /
microstructure /
pore /
CH crystal /
C-S-H gel
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈惠苏, 孙 伟, STROEVEN P. 水泥基复合材料集料与浆体界面研究综述(二): 界面微观结构的形成、劣化机理及其影响因素[J]. 硅酸盐学报,2004,32(1):70-79.
[2] STRUBLE L, SKALNY J, MINDESS S. A Review of the Cement-aggregate Bond[J]. Cement & Concrete Research, 1980, 10(2):277-286.
[3] 陈惠苏, 孙 伟, STROEVEN P. 水泥基符合材料集料与浆体界面研究综述(一):实验技术[J].硅酸盐报,2004,32(1):63-69.
[4] 陈惠苏, 孙 伟, STROEVEN P. 水泥基复合材料界面对材料宏观性能的影响[J]. 建筑材料学报,2005,8(1):51-62.
[5] 杨人和, 刘宝元, 吴中伟. 水泥石与石灰石集料界面过渡区孔结构及其CH晶体亚微观结构的研究[J].硅酸盐学报,1989,17(4):302-307.
[6] YANG R H, LIU B Y, WU Z W. Study on the Pore Structure of Hardened Cement Paste by SAXS[J].Cement and Concrete Research,1990, 20(3):385-393.
[7] JEHNG J Y, SPRAGUE D T, HALPERIN W P. Pore Structure of Hydrating Cement Paste by Magnetic Resonance Relaxation Analysis and Freezing[J]. Magnetic Resonance Imaging,1996,14(7/8):785-791.
[8] HALPERIN W P, JEHNG J Y, SONG Y Q. Application of Spin-spin Relaxation to Measurement of Surface Area and Pore Size Distributions in a Hydrating Cement Paste[J]. Magnetic Resonance Imaging,1994, 12 (12):169-173.
[9] TASONG W A, LYNSDALE C J, CRIPPS J C. Aggregate-cement Paste Interface—Part I: Influence of Aggregate Geochemistry[J].Cement and Concrete Research,1999,29(7): 1019-1025.
[10] ASBRIDGE A H, PAGE C L, PAGE M M. Effects of Metakaolin, Water/binder Ratio and Interfacial Transition Zones on the Microhardness of Cement Mortars[J]. Cement & Concrete Research, 2002, 32(9):1365-1369.
[11] LIAO K Y, CHANG P K, PENG Y N, et al . A Study on Characteristics of Interfacial Transition Zone in Concrete[J]. Cement & Concrete Research, 2004, 34(6):977-989.
[12] SCRIVENER K L, CRUMBIE A K, LAUGESEN P. The Interfacial Transition Zone (ITZ) Between the Cement Paste and Aggregate in Concrete [J].Interface Science,2004,12(3):411-421.
[13] ZHANG M H, LASTRA R, MALHOTRA V M. Rice-husk Ash Paste and Concrete: Some Aspects of Hydration and the Microstructure of the Interfacial Zone Between the Aggregate and Paste[J]. Cement & Concrete Research, 1996, 26(6):963-977.
[14] BENTZ D P, STUTZMAN P E, GARBOCZI E J. Experimental and Simulation Studies of the Interfacial Zone in Concrete[J]. Cement & Concrete Research, 1992, 22(5):891-902.
[15] 邱 晨, 张亚梅. 骨料尺寸与水灰比对混凝土界面过渡区微结构的影响[C]∥中国硅酸盐学会水泥分会.中国硅酸盐学会水泥分会全国水泥和混凝土化学及应用技术会议.四川绵阳: 中国硅酸盐学会水泥分会, 2011.
[16] GAO Y, SCHUTTER G D, YE G, et al . The ITZ Microstructure, Thickness and Porosity in Blended Cementitious Composite: Effects of Curing Age, Water to Binder Ratio and Aggregate Content[J]. Composites Part B Engineering, 2014,60(4):1-13.
[17] 胡明德,余其俊,王 旭,等.集料与硅酸盐水泥石界面的若干研究[J].武汉工业大学学报,1992,14(2):11-18.
[18] GAO J M, QIAN C X, LIU H F. ITZ Microstructure of Concrete Containing GGBS[J].Cement and Concrete Research,2005,35(7):1299-1304.
[19] 林 震,陈益民,苏姣华,等.外掺磨细矿渣与粉煤灰的水泥基材料的亚微结构研究[J].硅酸盐学报,2000,28(增1):6-10.
[20] 王 嘉. 水泥石—集料界面过渡层中CH晶体取向机理的探讨[J]. 武汉理工大学学报, 1986,(3): 42-47.
[21] 石 妍, 杨华全, 陈 霞,等. 骨料种类对混凝土孔结构及微观界面的影响[J]. 建筑材料学报,2015,18(1):133-138.
[22] 董 华,钱春香.砂岩、大理岩浆体界面区结构特征[J].硅酸盐学报,2008,36(增1): 192-196.
[23] HUSSIN A, POOLE C. Petrography Evidence of the Interfacial Transition Zone (ITZ) in the Normal Strength Concrete Containing Granitic and Limestone Aggregates[J]. Construction and Building Materials,2011,25(5): 2298-2303.
[24] DIAMOND S,HUANG J.The ITZ in Concrete:A Different View Based on Image Analysis and SEM Observations[J]. Cement Concrete Composites,2001,23(2/3): 179-188.
[25] BENTUR A. Microstructure Interfacial Effects and Micromechanics of Cementitious Composites[J]. Advanced Cement Based Materials, 1990, (16): 523-549.
[26] MEHTA P K, MONTEIRO P. Concrete: Structure, Properties and Materials[M].London:Prentice-Hall,1986.
[27] KURODA M, WATANABE T, TERASHI N. Increase of Bond Strength at Interfacial Transition Zone by the Use of Fly Ash[J]. Cement and Concrete Research,2000,30(2):253-258.