绿化屋顶基质层吸水饱和时的蓄水含量定义为最大含水量,最大含水量是绿化屋顶雨水滞蓄效果的重要评价指标。选择陶粒、草炭、煤渣等按不同组合不同配比设计6组基质配制方案,通过人工模拟降雨试验,探究了不同基质厚度、降雨强度及基质类型对屋顶绿化基质雨水滞蓄效果的影响。结果表明对于同种屋顶绿化基质层,厚度、降雨强度不影响其最大含水量,但厚度越大,蓄水总量越大,延迟产流时间越长,而降雨强度越大,延迟产流时间越短;对于不同种绿化基质层,总孔隙度较大的基质组其最大含水量也相对较大,但基质层持水性与颗粒不均匀系数有关,颗粒越均匀,其持水性能越低。
Abstract
The water storage capacity of saturated green roof substrates is defined as the maximum water content, which is important for evaluating the effect of rainfall detention. In this research, ceramics particles, peat, and coal cinder were selected to design the substrate of green roof by adjusting the combinations and mixing proportions. The influences of substrate thickness, rainfall intensity, and substrate type on the effect of rainwater detention were investigated through artificial rainfall experiments. Results suggest that thickness and rainfall intensity have no effect on the maximum water content in the presence of the same substrate. But with the increase of substrate thickness, the total capacity of water detention grows, and the delay time of runoff also extends; while when rainfall intensity increases, the delay time of runoff shortens. As for different substrates, the maximum water content of substrates of large total porosity is large correspondingly; and the water retention capacity is related with the coefficient of non-uniformity of substrate particles, which means that more even particles lead to lower water retention capacity.
关键词
屋顶绿化 /
最大含水量 /
滞蓄效果 /
延迟产流 /
持蓄雨水
Key words
green roof /
maximum water content /
retention effect /
delayed runoff /
rainwater retention
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王 炜,陈仁泽,刘 毅,等.大城市为何频频内涝[N].人民日报,2012-7-24(4).
[2]曹旭峰,吴 弢,李 伟.湖北多地遭遇暴雨袭击[EB/OL].(2015-7-15)[2016-08-10]. http://www.chinanews.com/sh/2015/07-15/7407569.shtml.
[3] VAN WOERT N D, ROWE D B, ANDRESEN J A,et al. Green Roof Storm Water Retention: Effects of Roof Surface, Slop, and Media Depth[J]. Journal of Environmental Quality, 2005,34(3):1036-1044.
[4] VILLARREAL E L,BENGTSSON L.Response of a Sedum Green-roof to Individual Rain Events[J].2005,25(1):1-7.
[5] NARDINI A, ANDRI S, CRASSO M. Influence of Vegetation Composition on Runoff in Two Simulated Green-roof Experiments[J].Urban Ecosystems,2008,11(4):385-398.
[6]SIMMONS M T,GARDINER B,WINDHAGER S,et al.Green Roofs Are Not Created Equal: the Hydrologic and Thermal Performance of Six Different Extensive Green Roofs and Reflective and Non-reflective Roofs in a Sub-tropical Climate[J].Urban Ecosystems,2008,11(4):339-348.
[7] GETTER K L,ROWE D B,ANDREASENM J A. Quantifying the Effect of Slope on Extensive Green Roof Stormwater Retention[J].Ecological Engineering,2007,31(4):225-231.
[8] 张 华, 李 茂, 张 沣,等. 简单屋顶绿化的滞蓄特性[J].土木建筑与环境工程, 2015, 37(4): 135-140.
[9] 唐莉华,倪广恒,刘茂峰,等.绿化屋顶的产流规律及雨水滞蓄效果模拟研究[J].水文,2011,31(4):18-22.
[10]孙 挺, 倪广恒, 唐莉华,等. 绿化屋顶雨水滞蓄能力试验研究[J]. 水力发电学报, 2012, 31(3): 44-48.
[11]张小泉,张清华,毕树峰.太行山北部中山幼林地土壤水分研究[J].林业科学,1994,30(3):193-200.
[12]张 杰,李海英,侯晓红.轻型屋顶绿化人工基质配方的筛选[J].湖北农业科学,2011,50(8):1568-1571.
[13]冯 吉,邹志超,邢伟民,等.都市屋顶绿化草坪草保水剂施用技术及经济效益分析[J].节水灌溉,2011,(11):76-79.
[14]周 媛,陈法志,谭 庆,等.屋顶绿化植物对废弃物转化基质的适应性研究[J].安徽农业科学,2011,39(8):4844-4846.
[15]连兆煌.无土栽培原理与技术[M].北京:中国农业出版社,1994.
[16]孙 健.屋顶绿化轻型植被毯的生产技术研究[D].北京:北京林业大学,2013.
[17]宋海鹏.轻型屋顶栽培基质厚度对6种景天属植物坪用性状的影响[D].南京:南京农业大学,2009.
[18]曹金露.简单屋顶绿化降雨产流影响因素研究[D].湖北宜昌:三峡大学,2015.