砂细度模数对壁后注浆浆液强度的影响

慕 欣,陈喜坤,陈洪祥

raybet体育在线 院报 ›› 2017, Vol. 34 ›› Issue (4) : 136-139.

PDF(2400 KB)
PDF(2400 KB)
raybet体育在线 院报 ›› 2017, Vol. 34 ›› Issue (4) : 136-139. DOI: 10.11988/ckyyb.20160135
水工结构与材料

砂细度模数对壁后注浆浆液强度的影响

  • 慕 欣1,陈喜坤2,陈洪祥3
作者信息 +

Influence of Sand’s Fineness Modulus on Slurry Strength ofBackfill Grouting

  • MU Xin1,CHEN Xi-kun2, CHEN Hong-xiang3
Author information +
文章历史 +

摘要

壁后注浆是盾构法施工过程中关键的一道工序。为了探究浆液强度的发展,将砂采用不同的筛分方法调配成细度模数分别为1.652,1.096,0.773的3种砂,并将3种砂分别用于配置惰性浆、硬性浆,并分别开展了凝结时间、直接剪切、立方体抗压试验,观测了细度模数不同的砂对惰性浆、硬性浆凝结时间、强度的影响。结果表明2种浆液的强度均随着用砂细度模数的增大而降低;硬性浆液中水泥的水化作用主要促进了黏聚力的增大及内摩擦角的降低;惰性浆液中粉煤灰的火山灰反应基本可以忽略。

Abstract

Backfill grouting is a critical step in the process of shield tunneling construction. In order to explore the development of slurry strength, we obtained sands of three different fineness modulus(1.652,1.096,0.773) by using different sieving methods and prepared inert slurry and rigid slurry by using the sands. Through setting time test, direct shear test and cubic compressive test, we observed the effect of fineness modulus of sand on the setting time and strength of inert slurry and rigid slurry. Results show that strengths of the two slurries decrease with the increasing of fineness modulus of sand. Moreover, cement hydration in rigid slurry mainly promotes the increase of cohesion and the decrease of internal friction; while the action of fly ash in inert slurry can be ignored.

关键词

泥水盾构 / 壁后注浆 / 砂细度模数 / 惰性浆 / 硬性浆 / 抗压强度 / 三轴试验

Key words

slurry shield / backfill grouting / fineness modulus of sand / inert slurry / rigid slurry / compressive strength / triaxial test

引用本文

导出引用
慕 欣,陈喜坤,陈洪祥. 砂细度模数对壁后注浆浆液强度的影响[J]. raybet体育在线 院报. 2017, 34(4): 136-139 https://doi.org/10.11988/ckyyb.20160135
MU Xin,CHEN Xi-kun, CHEN Hong-xiang. Influence of Sand’s Fineness Modulus on Slurry Strength ofBackfill Grouting[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(4): 136-139 https://doi.org/10.11988/ckyyb.20160135
中图分类号: U455   

参考文献

[1] 孙 闯, 张建俊, 刘家顺, 等. 盾构隧道壁后注浆压力对地表沉降的影响分析[J]. raybet体育在线 院报, 2012, 29(11): 68-72.
[2] 王树清, 蔡胜华, 蒋硕忠. 盾构法隧道施工同步注浆材料研究[J]. raybet体育在线 院报, 1998, 15(4): 28-30.
[3] BEZUIJEN A, SANDERS M P M, DEN HAMER D,et al. Laboratory Tests on Compensation Grouting, the Influence of grout bleeding[C]∥Czech Tunnelling Committee ITA/AITES. Proceedings of the 33rd ITA-AITES World Tunnel Congress. May 5-10,Prague, Czech Republic, 2007: 395-401.
[4] 曾晓清, 张庆贺. 土压平衡盾构同步注浆浆液性能试验研究[J]. 中国市政工程, 1995, (1): 46-50.
[5] 左 佳, 朱 伟, 闵凡路. 盾构隧道壁后注浆材料固结-胶结特性研究[C]∥IEEE.2011年地球科学与工程国际学术会议论文集. 新泽西州:IEEE出版社,2011:536-540.
[6] 陈喜坤, 朱 伟, 王 睿, 等. 南京纬三路过江通道弃砂在壁后注浆材料中的利用[J]. 隧道建设, 2015, 35(11): 1176-1181.
[7] GB/T 14684—2011,建设用砂[S]. 北京: 中国标准出版社, 2011.
[8] LIM S K, TAN C S, CHEN K P, et al. Effect of Different Sand Grading on Strength Properties of Cement Grout[J]. Construction & Building Materials,2013,38(1): 348-355.
[9] WESTERHOLM M, LAGERBLAD B, SILFWERBRAND J, et al. Influence of Fine Aggregate Characteristics on the Rheological Properties of Mortars[J]. Cement & Concrete Composites, 2008,30(4): 274-282.
[10]吴永根, 李文哲, 韩 照, 等. 砂细度模数对道面混凝土性能的影响[J]. 空军工程大学学报(自然科学版), 2013, 14(4): 5-8.
[11]宁建国, 黄 新. 固化土结构形成及强度增长机理试验[J]. 北京航空航天大学学报, 2006, 32(1): 97-102.

基金

江苏省建设系统科技项目(2016ZD79)

PDF(2400 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map