传热模型的精确性直接关系到能源桩换热效率的计算精度,进而影响能源桩设计。以螺旋型埋管能源桩为研究对象,在信阳地区开展了一项现场原位试验,实测获得了螺旋型埋管能源桩换热过程中的桩周温度场数据,并分别与圆柱面热源模型和线圈热源模型的计算成果进行了对比分析。研究成果显示有限长热源模型较无限长热源模型具有更高的计算精度,有限长线圈热源模型较有限长圆柱面热源模型具有更高的计算精度,采用有限长线圈热源模型计算的桩壁温度误差<1.5%,桩周温度场计算误差<2.5%,地埋管进出口水温计算误差<2.2%,故将其推荐为螺旋型埋管能源桩桩周温度场的计算模型。最后,探索了不同传热模型针对螺旋型埋管能源桩的适用性,为指导螺旋型埋管能源桩设计提供了科学依据。
Abstract
Accuracy of heat transfer model is directly related to the computational accuracy of heat transfer efficiency of energy pile, which influences the design of energy piles. Taken energy pile with buried spiral pipe as the research object, an in-situ test was conducted in Xinyang area, Henan province. Then, measured data such as temperature field around the pile was acquired, and calculation results of the cylindrical heat source model and the coil heat source model are respectively compared with measured data. Research results show that the computational accuracy of heat source model with finite length is higher than that of heat source model with infinite length. Coil heat source model with finite length is more accurate than cylindrical surface heat source model with finite length. The calculation error of tube wall temperature in coil heat source model with finite length is less than 1.5%, the calculation error of temperature field around the pile is less than 2.5%, and the water temperature at inlet and outlet of buried pipe less than 2.2%, respectively. In view of this, coil heat source model with finite length is recommended for calculating temperature field in energy pile with spiral buried tube. The applicability of different heat transfer models for the spiral pipe pile was explored, and can be taken as reference for the design of energy pile with buried spiral tube.
关键词
螺旋型埋管能源桩 /
圆柱面热源模型 /
线圈热源模型 /
桩周温度场 /
试验验证
Key words
energy pile with buried spiral pipe /
cylindrical heat source model /
coil heat source model /
temperature field around pile /
temperature field around the energy pile /
experimental verification
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BRANDL H. Thermo-active Ground-Source Structures for Heating and Cooling[J]. Procedia Engineering, 2013,57(1): 9-18.
[2] 桂树强,程晓辉,张志鹏. 地源热泵桩基与钻孔埋管换热器换热性能比较[J]. 土木建筑与环境工程, 2013,35(3): 151-156.
[3] 方肇洪, 刁乃仁, 曾和义. 地热换热器的传热分析[J]. 工程热物理学报, 2004,25(4): 685-687.
[4] 余乐渊,赵 军,李新国,等.竖埋螺旋管地热换热器理论模型及实验研究[J].太阳能学报,2004,25(5):690-694.
[5] 张文克.桩埋管地热换热器的传热模型研究[D].济南:山东建筑大学,2009.
[6] 刘俊红,张克文,方肇洪.桩埋螺旋管式地热换热器的传热模型[J].山东建筑大学学报,2010,25(2):95-100.
[7] 张克文,刘俊红,黄体士,等.桩埋管地热换热器的传热分析[J].制冷与空调,2009,23(4):105-108.
[8] MAN Y, YANG H X, DIAO N R, et al. A New Model and Analytical Solutions for Borehole and Pile Ground Heat Exchangers[J]. International Journal of Heat and Mass Transfer, 2010, 53(13/14): 2539-2601.
[9] 李 新,方 亮,赵 强,等. 螺旋埋管地热换热器的线圈热源模型及其解析解[J]. 热能动力工程, 2011,26(4): 475-479.
[10]李 新.能量桩的传热研究与工程应用[D]. 济南:山东建筑大学, 2011.
基金
国家自然科学基金项目(41502238);中央高校杰出人才培育基金项目(CUGL150819)