为研究冻结褐色泥岩加速蠕变特性,以陕西某煤矿主井井筒褐色泥岩为研究对象,基于不同的轴压水平,采用WDT-100冻土试验机分别在-5,-10,-15 ℃的负温条件下进行了单轴等载荷蠕变试验。试验结果表明:低轴压水平下的冻结褐色泥岩蠕变呈现出瞬时弹性、减速、稳定3阶段特性,高轴压水平呈现出瞬时弹性、减速、等速、加速4阶段特性,轴压水平因素对冻结褐色泥岩轴向应变增加的影响程度远大于温度因素。基于经典西原模型,串联一个带应变启动的非线性黏滞阻尼器,得到7元件优化西原模型,通过最小二乘法对模型参数进行非线性回归分析,分析结果表明,7元件优化西原模型拟合曲线与试验结果吻合良好,更适合于描述冻结褐色泥岩非线性加速蠕变特性的变化规律,对深井煤矿冻结褐色泥岩的蠕变破坏预报具有参考价值。
Abstract
In the present research, uniaxial creep test was conducted under different axial compression levels at varying freezing temperature (-5℃,-10℃,-15℃) by WTD-100 artificial frozen soil apparatus to investigate the accelerating creep of frozen brown mudstone. The brown mudstone in a coal mine shaft in Shaanxi Province was taken as research object. Test results showed that the frozen brown mudstone experienced three stages of transient elasticity, deceleration and stability under low axial pressure, and four stages of instantaneous elasticity, deceleration, constant velocity, and acceleration under high axial compression level. The influence of axial compression on frozen brown mudstone is much greater than that of temperature. Moreover, by connecting nonlinear viscous dampers with strain start, an optimized Nishihara model with seven elements was established based on classical Nishihara model, and the model parameters are analyzed through nonlinear regression by the least square method. Analysis results showed that the fitting curves of the optimized Nishihara model are in good agreement with the experimental results. The optimized Nishihara model is more specifically suitable for describing the variation rule of nonlinear accelerating creep characteristics of frozen brown mudstone.
关键词
冻结褐色泥岩 /
加速蠕变 /
优化西原模型 /
单轴等载荷蠕变试验 /
最小二乘法
Key words
frozen brown mudstone /
accelerating creep /
optimized Nishihara model /
uniaxial equivalent-loading creep test /
least square method
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李开文,毛 勇,孙 闯,等. 越江隧道联络通道冻结法施工力学模拟分析[J]. raybet体育在线
院报,2011,28(7):57-61.[2] 姚兆明,张秋瑾,牛连僧. 基于蚁群算法的冻结重塑黏土分数阶导数西原模型分析[J]. raybet体育在线
院报,2016,33(7):81-86.[3] 张强勇,张建国,杨文东,等. 软弱岩体蠕变模型辨识与参数反演[J]. 水利学报,2008,39(1):66-72. [4] 毛兴军,姚兆明,毛 芬. 人工冻结软岩粒子群塑性强化开尔文蠕变模型[J]. 地下空间与工程学报,2014,10(增1):1602-1605. [5] 范庆忠,高延法. 软岩蠕变特性及非线性模型研究[J]. 岩石力学与工程学报,2007,26(2):391-396. [6] 孙海忠,张 卫. 一种分析软土黏弹性的分数导数开尔文模型[J]. 岩土力学,2007,28(9):1983-1986. [7] 刘保国,崔少东. 冻结泥岩蠕变损伤试验研究[J]. 岩石力学与工程学报,2010,29(10):2127-2133.[8] 蔡美峰.岩石力学与工程[M]. 北京:科学出版社, 2002.[9] 齐亚静,姜清辉,王志俭,等. 改进西原模型的三维蠕变本构方程及其参数辨识[J]. 岩石力学与工程学报,2012,31(2):347-355. [10]于怀昌,李亚丽,刘汉东. 粉砂质冻结泥岩常规力学、蠕变以及应力松弛特性的对比研究[J]. 岩石力学与工程学报,2012,31(1):60-70.