一种空间误差模型在混凝土拱坝变形预测中的应用

胡添翼,许朴

raybet体育在线 院报 ›› 2017, Vol. 34 ›› Issue (11) : 48-53.

PDF(1423 KB)
PDF(1423 KB)
raybet体育在线 院报 ›› 2017, Vol. 34 ›› Issue (11) : 48-53. DOI: 10.11988/ckyyb.20160657
工程安全与灾害防治

一种空间误差模型在混凝土拱坝变形预测中的应用

  • 胡添翼1a,1b,2,许朴2
作者信息 +

Application of a Spatial Error Model in Concrete Arch Dam Deformation Forecast

  • HU Tian-yi1,2,3, XU Pu3
Author information +
文章历史 +

摘要

混凝土拱坝作为一种高次超静定结构,具有较强的自适应性和整体性,但传统混凝土拱坝变形统计模型主要考察单个测点的变形序列,不能体现不同测点之间的相互作用。基于传统混凝土拱坝变形统计模型,用空间计量方法挖掘了拱坝不同测点同一时刻误差项空间面板数据的空间关联特性;进一步采用空间面板自回归模型拟合变形序列误差项面板数据,建立了混凝土拱坝变形预测空间误差模型。小湾拱坝坝体34个监测点水平向变形监测序列分析结果表明:误差面板数据之间存在很强的正空间关联性质,空间误差模型的预测效果优于传统统计模型,具有一定应用前景。

Abstract

Concrete arch dam, as a highly statically indeterminate structure, has strong adaptability and integrity. Traditional statistical models for concrete arch dam mainly focus on the deformation of a single point rather than the interaction among different points. In this article, the spatial autocorrelation of errors of different points at the same instance was mined by using spatial econometric method. Furthermore, the errors were modified by using the spatial regression model, and hence a spatial error model for concrete arch dam was established. As an example, the deformation sequences of 34 monitoring points in Xiaowan arch dam were studied and the results show that the error panel data are of strong positive correlation, and the spatial error model is superior to traditional statistical models.

关键词

混凝土拱坝 / 空间面板数据 / 空间误差模型 / 空间自相关 / 变形预测

Key words

concrete arch dam / spatial panel data / spatial error model / spatial autocorrelation / deformation forecast

引用本文

导出引用
胡添翼,许朴. 一种空间误差模型在混凝土拱坝变形预测中的应用[J]. raybet体育在线 院报. 2017, 34(11): 48-53 https://doi.org/10.11988/ckyyb.20160657
HU Tian-yi, XU Pu. Application of a Spatial Error Model in Concrete Arch Dam Deformation Forecast[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(11): 48-53 https://doi.org/10.11988/ckyyb.20160657
中图分类号: TV698.1   

参考文献

[1] 吴中如, 沈长松, 阮焕祥. 水工建筑物安全监控理论及其应用[M]. 南京: 河海大学出版社, 1990.
[2] 秦 栋. 特高拱坝变形性态时空分析模型研究[D]. 南京:河海大学, 2015.
[3] YU H, WU Z R, BAO T F,et al. Multi-variate Analysis in Dam Monitoring Data with PCA[J]. Science China (Technological Sciences), 2010, 53(4): 36-40.
[4] CEVIK A. Discussion on Correction of Soil Parameters in Calculation of Embankment Settlement Using a BP Network Back-analysis Model[J]. Engineering Geology, 2008, 100(3/4): 146-147.
[5] DENG N Y, TIAN Y J. The New Approach in Data Mining-support Vector Machines[M]. Beijing: Science Press, 2004.
[6] VJUSHIN D, GOVINDAM R B, MONETTI R A, et al. Scaling Analysis of Trends Using DFA[J]. Physica A: Statistical Mechanics and Its Applications, 2001, 302(1/2/3/4): 234-243.
[7] 吴中如, 顾冲时. 重大水工结构隐患病害检测与健康诊断[M]. 北京: 高等教育出版社, 2005.
[8] 顾冲时, 吴中如. 拱坝动态空间变形场的混合模型研究[J]. 工程力学, 1996(增): 376-380.
[9] 谢国权, 戚 蓝, 曾新华. 基于小波和神经网络拱坝变形预测的组合模型研究[J]. 武汉大学学报(工学版), 2006, 39(2): 16-19.
[10]殷详详, 包腾飞, 李月娇,等. HDNN-MC模型在特高拱坝变形预测中的应用[J]. 中国科技论文, 2014, 9(11): 1258-1261.
[11]刘大有, 陈慧灵, 齐 红, 等.时空数据挖掘研究进展[J]. 计算机研究与发展, 2013, 50(2): 225-239.
[12]ANTUNES C M, OLIVEIRA A L. Temporal Data Mining: An Overview[C]∥Proceedings of the International Workshop on Temporal Data Mining(KDD2001). New York: ACM, August 26-29,2001: 1-13.
[13]RODDICK J F, SPILIOPOULOU M. A Survey of Temporal Knowledge Discovery Paradigms and Methods[J]. IEEE Transactions on Knowledge and Data Engineering, 2002, 14(4): 750-767.
[14]FU T C. A Review on Time Series Data Mining[J]. Engineering Applications of Artificial Intelligence, 2011, 24(1): 164-181.
[15]SHEKHAR S, ZHANG P, HUANG Y, et al. Data Mining: Next Generation Challenges and Future Directions[M]. Cambridge, MA: MIT Press, 2004: 357-380.
[16]SHEKHAR S, ZHANG P, HUANG Y. Data Mining and Knowledge Discovery Handbook[M]. Berlin: Springer, 2010,837-854.
[17]顾冲时, 吴中如, 蔡 新. 探讨空间变形场的正反分析模型[J]. 工程力学, 1997, 14(2): 138-143.
[18]李 波, 李 军, 江 凯,等. 碾压混凝土坝变形时空监控模型研究[J]. raybet体育在线 院报, 2013, 30(1): 90-92.
[19]李广春, 戴吾蛟, 杨国祥,等. 时空自回归模型在大坝变形分析中的应用[J]. 武汉大学学报(信息科学版), 2015, 40(7): 877-881.
[20]WARD M D, GLEDITSCH K S. Spatial Regression Models[M]. Oaks: SAGE Publications, 2008.
[21]马洪琪. 我国坝工技术的发展与创新[J]. 水力发电学报, 2014, 33(6): 1-10.

基金

国家自然科学基金重点项目(41323001,51139001);高等学校博士学科点专项基金项目(20120094110005,20120094130003,20130094110010);江苏省杰出青年基金项目(BK20140039);水利部土石坝破坏机理与防控技术重点实验室基金项目(ky914002)

PDF(1423 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map