组合权重模糊联系度模型在水质评价中的应用

叶章蕊,卢毅敏

raybet体育在线 院报 ›› 2016, Vol. 33 ›› Issue (9) : 33-39.

PDF(1336 KB)
PDF(1336 KB)
raybet体育在线 院报 ›› 2016, Vol. 33 ›› Issue (9) : 33-39. DOI: 10.11988/ckyyb.20150615
水资源与环境

组合权重模糊联系度模型在水质评价中的应用

  • 叶章蕊a,b,卢毅敏a,b
作者信息 +

Application of Fuzzy Connection Degree Model Based on Combined Weights to Evaluate Water Quality

  • YE Zhang-rui1,2,LU Yi-min1,2
Author information +
文章历史 +

摘要

针对水质评价指标存在的不确定性和水质评价标准存在的模糊性,基于集对分析理论与模糊层次分析法构建了模糊联系度水质评价模型。首先计算各评价指标值的分级联系度,对样本指标值做初步分类;再计算各评价样本与水质标准之间的综合联系度;最后通过置信度准则评判评价样本的水质级别。为突出不同评价指标的贡献率,将熵值赋权法和超标加权法引入该模型,并通过理想点法进行权重的合成,实现了多种赋权方法优势的融合。将模型应用于闽江渔业水域的水质评价,结果表明基于组合权重的模糊联系度水质评价结果更贴近实际情况,评价结果合理可信。

Abstract

In view of the uncertainty of evaluation indexes of water quality and the fuzziness of water quality standard, a fuzzy connection degree model of water quality evaluation was constructed based on set pair analysis and fuzzy analytical hierarchy process. First of all, the index values of water samples were preliminarily classified by calculating the hierarchical connection degree of each evaluation index value. Then the comprehensive degree of connection between samples and water quality standard was calculated. Finally, water quality grade was judged by confidence criterion. To highlight the contribution of different evaluation indexes, entropy method and super weighting method were introduced. Then the weights were combined based on ideal point method, by which the index weights were more reasonable. This model was applied to the evaluation of the fishery waters of Minjiang River, and the result was compared with those from gray classification method, synthesis index method and single factor evaluation method. The results obtained by the proposed model were closer to the real situation, and hence are reliable.

关键词

集对分析 / 分析指标分类 / 模糊联系度 / 组合权重 / 水质评价

Key words

set pair analysis / classification of indexes / fuzzy connection degree / combination weight / water quality evaluation

引用本文

导出引用
叶章蕊,卢毅敏. 组合权重模糊联系度模型在水质评价中的应用[J]. raybet体育在线 院报. 2016, 33(9): 33-39 https://doi.org/10.11988/ckyyb.20150615
YE Zhang-rui,LU Yi-min. Application of Fuzzy Connection Degree Model Based on Combined Weights to Evaluate Water Quality[J]. Journal of Changjiang River Scientific Research Institute. 2016, 33(9): 33-39 https://doi.org/10.11988/ckyyb.20150615
中图分类号: X824   

参考文献

[1] HORTON R K. An Index Number System for Rating Water Quality[J]. Journal of Water Pollution Control Federation, 1965, 37(3):300-306.
[2] ROSS S. An Index System for Classifying River Water Quality[J] . Water Pollution Control, 1977, 76 (1): 113-122.
[3] BROWN R M, MCCLELLAND N I, DEININGER R A, et al. A Water Quality Index—Do We Dare?[J]. Water Sewage Works, 1970, 117:339-343
[4] HU Liang-ming, ZHANG Chang-hui, HU Cai-hong, et al. Use of Grey System for Assessment of Drinking Water Quality: A Case Study of Jiaozuo City, China[M]// Advances in Grey Systems Research, Heidelberg: Springer, 2010: 469-478.
[5] CHEN Jian-ping, LV Li-ping, WANG Ming-yu. Groundwater Quality Evaluation Based on Fuzzy Comprehensive Method[M]. Advances in Intelligent & Soft Computing, 2010: 455-462.
[6] SASIKUMAR K, MUJUMDAR P P. Fuzzy Optimization Model for Water Quality Management of a River System[J]. Journal of Water Resources Planning and Management, 1998, 124(2): 79-88.
[7] WU Mei-lin, WANG You-shao, GU Ji-dong. Assessment for Water Quality by Artificial Neural Network in Daya Bay, South China Sea[J]. Ecotoxicology, 2015, 24(7/8): 1632-1642.
[8] 王文圣, 李跃清, 金菊良,等. 水文水资源集对分析[M]. 北京: 科学出版社, 2010.
[9] 吴开亚, 金菊良, 周玉良, 等. 流域水资源安全评价的集对分析与可变模糊集耦合模型[J]. 四川大学学报(工程科学版), 2008,40(3):6-12.
[10]胡晓雪, 杨晓华, 郦建强,等. 河流健康系统评价的集对分析模型[J]. 系统工程理论与实践, 2008,28(5):164-170.
[11]魏明华, 郑志宏, 黄 强,等. 基于改进SPA法的地下水环境模糊综合评判[J]. 水利学报, 2009,40(10): 1024-1029.
[12]王文圣, 张 翔, 金菊良,等. 水文学不确定性分析方法[M]. 北京: 科学出版社, 2011.
[13]赵克勤. 集对分析及其初步应用[M]. 杭州: 浙江科学技术出版社, 2000.
[14]王 颖, 邵 磊, 杨方廷,等. 改进的集对分析水质综合评价方法[J]. 水力发电学报, 2012,31(3):99-106.
[15]王文圣, 金菊良, 丁晶,等. 水资源系统评价新方法——集对评价法[J]. 中国科学(E辑), 2009,39(9):1529-1534.
[16]徐广波, 轩少永, 尤庆华. 基于熵权的模糊集对模型在港口水域通航风险评价中的应用[J]. 上海海事大学学报, 2012,33(1):7-11.
[17]孟宪萌, 胡和平. 基于熵权的集对分析模型在水质综合评价中的应用[J]. 水利学报, 2009,40(3):257-262.
[18]ZOU Zhi-hong, YUN Yi, SUN Jing-nan. Entropy Method for Determination of Weight of Evaluating Indicators in Fuzzy Synthetic Evaluation for Water Quality Assessment[J]. Journal of Environmental Sciences, 2006,18(5): 1020-1023.
[19]金菊良, 黄慧梅, 魏一鸣. 基于组合权重的水质评价模型[J]. 水力发电学报, 2004,23(3):13-19.
[20]郑和祥, 李和平, 郭克贞,等. 基于信息熵和模糊物元模型的牧区节水灌溉项目后评价[J]. 水利学报, 2013,(增1):57-65.
[21]张先起, 梁 川. 基于熵权的模糊物元模型在水质综合评价中的应用[J]. 水利学报, 2005,36(9):1057-1061.
[22]王清芬, 王伯铎, 马俊杰,等. 用灰色聚类关联分析法对水环境质量的评价[J]. 环境工程, 2008,26(3):59-62.
[23]吴智诚, 张江山, 陈 盛. TOPSIS法在水环境质量综合评价中的应用[J]. 水资源保护, 2007,23(2):10-12.
[24]许叶军, 达庆利. 基于理想点的多属性决策主客观赋权法[J]. 工业工程与管理, 2005,10(4):45-47.
[25]GB3838—2002,地表水环境质量标准[S].北京:中国环境科学出版社,2002.

基金

福建省重点科技项目(2013Y0060);数字福建重点建设项目(闽发改网高技函〔2013〕84号)

PDF(1336 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map