为了研究水灰比和偏高岭土掺量对硫酸铝盐水泥的流动度、收缩率和力学性能的影响,以龙门石窟裂隙防渗的灌浆工程为例,开展流动性试验、力学性能试验及干缩性能试验。结果表明硫铝酸盐水泥初始流动度大小与水灰比、偏高岭土掺量均成正比;水灰比越高,微膨胀率越低,甚至出现一定收缩,整体上膨胀率随偏高岭土掺量增大而变大;抗压强度大小与水灰比、偏高岭土掺量均成反比;7 d的抗折强度随偏高岭土掺量增大而减小,养护28 d的抗折强度恰恰相反;抗折强度随水灰比的增大而减小,且回落幅度相对较大;黏结强度随水灰比先增大后减小,随偏高岭土掺量增加,黏结强度整体上有所增加,在水灰比为0.5时,出现1个峰值。 试验结果可为龙门石窟的现场灌浆试验提供理论依据,也可为同类石质文物的灌浆修复研究提供参考。
Abstract
To study the influences of water-cement ratio and metakaolin blending ratio on the fluidity, shrinkage and mechanical properties of sulphoaluminate cement, we take Longmen Grottoes as an example, and carry out tests on fluidity, mechanical properties and dry shrinkage property. The results show that, firstly, the initial fluidity of sulphoaluminate cement is proportional to water-cement ratio and metakaolin blending ratio; secondly, the higher water-cement ratio is, the lower microexpansion rate is, even with a little contraction. In general , expansion rate increases with metakaolin blending ratio; compressive strength is inversely proportional to water-cement ratio and metakaolin blending ratio; the flexural strength of specimens cured for 7 days decreases with the increasing metakaolin blending ratio, while the flexural strength of specimens cured for 28 days is on the contrary; flexural strength decreases with the increasing water-cement ratio, and the decline rate is relatively large; bonding strength increases first and then decreases with the increasing water-cement ratio; while with increasing metakaolin blending ratio, bonding strength increases overall, and in particular, peak value occurs under water-cement ratio of 0.5. The experimental results provide theoretical basis for the field grouting test in Longmen Grottoes, and also provide reference for grouting repair in similar stone cultural relics.
关键词
硫铝酸盐水泥 /
水灰比 /
偏高岭土掺量 /
流动度 /
力学性能
Key words
sulphoaluminate cement /
water-cement ratio /
metakaolin blending ratio /
fluidity /
mechanical properties
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王燕谋,苏慕珍,张 量. 硫铝酸盐水泥[M]. 北京:北京工业大学出版社, 1999: 174-178.
[2] 王建军,张自力,万善奎. 硫铝酸盐水泥的发展现状与展望[J]. 新世纪水泥导报,2011,17(6):51-53.
[3] 邓君安,李德栋,李启棣,等. 硫铝酸盐早强水泥负温下的水化硬化[J]. 硅酸盐学报, 1983, 11(1): 85-94.
[4] 韩建国,阎培渝. 水灰比和碳酸锂对硫铝酸盐水泥水化历程的影响[J]. 混凝土,2010,(12):5-7,26.
[5] 许仲梓,周伟玲,邓 敏. 硫铝酸盐水泥体系高温稳定性研究[J]. 硅酸盐学报,2001,29(2):104-108.
[6] KADLECEK S, MODRY S. Size Effect of Test Specimens on Tensile Splitting Strength of Concrete: General Relation[J]. Materials and Structures, 2002,35(1) : 28-34.
[7] RAMEZANIANPOUR A A, JOVEIN H B. Influence of Metakaolin as Supplementary Cementing Material on Strength and Durability of Concretes[J]. Construction and Building Materials,2012, 30(5):470-479.
[8] SIDDIQUE R, KLAUS J. Influence of Metakaolin on the Properties of Mortar and Concrete: A Review[J]. Applied Clay Science, 2009,43(3):392-400.
[9] 卜景龙,安树好. 高标号水泥浆体流动度的影响因素及控制[J]. 河北理工学院学报,2004,26(4):54-57.
[10]方明晖,钱晓倩,朱蓬莱,等. 偏高岭土对羟乙基甲基纤维素改性砂浆性能影响[J]. 建筑材料学报,2012,15(6):819-824.
[11]蔡安兰. 高性能水泥干缩的测试方法及机理研究[D].南京:南京工业大学,2005.
[12]高安平,崔学民. 偏高岭土在水泥及混凝土领域的研究进展[J]. 广西大学学报(自然科学版),2006,31(增):168-172.
[13]王宝民,刘 伟. 偏高岭土对高性能混凝土力学性能影响试验研究[J]. 公路交通科技,2010,27(9):126-129.
[14]方 志,张洪侨,张旷怡,等. 高性能注浆体与岩锚结合面黏结性能的试验研究[J]. 铁道学报,2014,36(12):104-110.