粒子图像测速(PIV)技术是一种瞬态流动平面二维速度场测试技术,在细部流场实测领域得到重视,但是成熟的PIV产品价格高昂。鉴于此,介绍了一种简易的PIV装置,主要由高速摄像机、激光发射器、柱面透镜和示踪粒子构成,以较低成本即可基本实现商业用PIV产品的功能。为了验证简易PIV性能,设计了PIV简易装置,采用Fluent软件模拟,并结合PIV技术对比分析了简易PIV装置的优缺点,同时对影响结果的粒径大小和粒子跟随性进行了优化。结果表明,简易PIV装置适宜选用玉米粉作为示踪粒子,并需要根据示踪粒子跟随性所能达到的最大进口水流速度选择高速摄像机的帧率,最终能够较好地实现流场实测,进而达到对PIV技术进行开发和优化的目的,其分析结果将为后续研究者提供参考。
Abstract
As a measurement technique of instantaneous 2-D velocity flow field, particle image velocimetry(PIV) has received much attention in detailed flow field measurement, but mature product of PIV is still expensive. In view of this, we introduce a simple device which consists of high-speed digital camera, laser transmitter, cylindrical lens and tracer particle. The fuctions of business PIV product can be achieved with low cost. To verify the simple PIV performance in this paper, we designed a simple device and analyzed the advantages and disadvantages of this simple device by software Fluent. Furthermore, we optimized the particle size and the tracking performance of particle. Results show that corn flour particle is suitable as the tracer particle of this simple device. Moreover, we should choose the frame rate of high-speed digital camera according to the maximum inlet water velocity which the tracking performance of tracer particle can reach. During this process, we can get a better flow field measurement, and develope and optimize the PIV technique. The analysis result offers important reference for further study.
关键词
粒子图像测速技术 /
示踪粒子 /
跟随性 /
优化开发 /
Fluent软件
Key words
particle image velocimetry technology /
tracer particle /
following performance /
development and optimization /
Software Fluent
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 冯旺聪,郑士琴. 粒子图像测速(PIV)技术的发展.仪器仪表用户,2003,10(6):1-3.
赵 宇. PIV测试中示踪粒子性能的研究.大连:大连理工大学,2004.
严 敬,杨小林,邓万权,等. 示踪粒子跟随性讨论. 农业机械学报,2005,36(6):54-56.
钟 强,陈启刚,王兴奎,等. 提高PIV片光源质量的研究.实验力学,2013,28(6): 692-698.
QIE Lu-wen,XIA Qian,ZHANG Xiang,et al. Research on the Characteristics of the Vortex Field of Breakwaters by the PIV technique. Marine Science Bulletin,2014,16(2):72-89.
刘 超,李龙国,李乃稳. 利用PIV技术对淹没射流瞬时流场特性的研究.南水北调与水利科技,2015,13(3):471-475.
KOTSOVINOS N E. A Study of The Entrainment And Turbulence in A Plane Buoyant Jet. California:California Institute of Technology,1975.
LAU J C,MORRIS P J,FISHER M J. Measurements in Subsonic and Supersonic Free Gets Using a Laser Velocimeter. Journal of Fluid Mechanics,1979,93(1):1-27.
VOULGARIS G, TROWBRIDGE J H. Evaluation of the Acoustic Doppler Velocimeter (ADV) for Turbulence Measurements. Journal of Atmospheric and Oceanic Technology, 1998,15(1):272-289.
SNYDER W H,CASTRO I P. Acoustic Doppler Velocimeter Evaluation in Stratified Towing Tank. Journal of Hydraulic Engineering,1999,125(6):595-603.
沈 熊. 激光多普勒测速技术及应用. 北京:清华大学出版社,2004.
PAPANICOLAOUS P N, LIST E J. Investigation of Round Vertical Turbulent Buoyant Jets. Journal of Fluid Mechanics,1988,195(1):341-391.
LAU J C,WHIFFEN M C,FISHER M J,et al. A note on Turbulence Measurements with a Laser Velocimeter. Journal of Fluid Mechanics,1981,102:353-366.
吴飞雪,吴小林,董守平,等.粒子成像测速技术研究进展.石油大学学报,1996,20(3):103-108.
孙鹤泉,康海贵,李广伟. PIV原理与应用. 水道港口,2002,23(1):42-45.
LIU Z C, ADRAIN R J. High Resolution Measurement of Turbulent Structure in a Channel with PIV. Experiments in Fluids,1991,10(6):301-312.
吴 剑,齐鄂荣,李 炜,等. 应用PIV系统研究横流中近壁水平圆柱绕流漩涡特性. 水科学进展,2005,16(5):627-633.
ADRIAN R J. Particle-Imagine Techniques for Experimental Fluid Mechanics.Annual Review of Fluid Mechanics,1991,23(1):261-304.
SCHMITT T,KOSTER J N,HAMACHER H. Particle Design for Displacement Tracking Velocimetry. Measurement Science and Technology,1995,6(6):682-689.
阮 驰,孙传东,白永林,等. 水流场PIV测试系统示踪粒子特性研究.实验流体力学,2006,20(2):72-77.
徐元利,徐元春,梁 兴,等. Fluent软件在圆柱绕流模拟中的应用.水利电力机械,2005,27(1):39-41.
杨 烁,吴宝山.二维圆柱绕流数值模拟.中国造船,2007,48(增刊):533-540.
基金
国家自然科学基金项目(51579136);水利部水工程生态效应与生态修复重点实验室开放基金(2013002);三峡库区生态环境教育部工程研究中心开放基金(KF2010-03)