为研究自然状态与饱水状态混凝土的动态劈拉特性,进行了不同应变速率(10-5/s ,10-4/s ,10-3/s ,10-2/s)下的径向劈拉试验,对混凝土劈拉强度进行了深入分析,并利用实时采集的声发射数据分析自然状态与饱水状态混凝土在劈拉破坏全过程中的能量释放特性及破坏规律。结果表明:自然状态和饱水状态混凝土的劈拉强度随加载速率的增加而增大。在低应变速率(10-5/s,10-4/s和10-3/s)时,由于自由水的楔入作用,饱水状态混凝土的劈拉强度比自然状态混凝土的劈拉强度小;在应变速率为10-2/s时,由于Stefan 效应,饱水状态混凝土的劈拉强度比自然状态混凝土大;饱水状态混凝土的动态增强因子比自然状态混凝土的大,饱水状态混凝土率敏感性更显著;声发射信号特征与混凝土的破坏特性相一致,实时采集的声发射信号可对混凝土的劈拉破坏过程进行较准确的监测。
Abstract
Radial splitting tensile tests for natural and water saturated concrete specimens with size of Φ150×150mm was carried out under different strain rates(10-5,10-4,10-3 and 10-2s-1). Splitting tensile strength of concrete was analyzed in detail, and energy release characteristics and damage law of natural and water saturated concretes were researched in the whole process of splitting tensile damage by real-time acoustic emission data. The results show that: 1) with the increase of loading rate ,splitting tensile strength of natural and water saturated concretes increases; 2) at low strain rates (10-5,10-4 and 10-3/s), the splitting tensile strength of water saturated concrete is smaller than that of natural concrete due to the wedging action of free water, whereas at the strain rate of 10-2/s, the splitting tensile strength of water saturated concrete is larger than that of natural concrete due to Stefan effect; 3) dynamic enhancement factor of water saturated concrete is larger than that of natural concrete, and strain rate sensitivity of water saturated concrete is more obvious; 4) acoustic emission signal characteristics is in accordance with concrete failure characteristics, and acoustic emission data can be used to accurately monitor the process of concrete splitting tensile failure.
关键词
混凝土 /
饱水状态 /
应变速率 /
动态劈拉特性 /
声发射
Key words
concrete /
water saturated /
strain rate /
dynamic splitting tensile characteristics /
acoustic emission
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ROSSI P. Influence of Cracking in the Presence of Freewater on the Mechanical Behavior of Concrete[J].Magazine of Concrete Research, 1991, 43(154): 53-57.
[2] 尚仁杰.混凝土动态本构行为研究[D].大连:大连理工大学,1994.
[3] 李 伟,谢和平,王启智,等.大理岩动态拉伸强度及弹性模量的SHPB实验研究[J].实验力学,2005,20(2):200-204.
[4] 齐 虎,李云贵,吕西林.混凝土弹塑性损伤本构模型的动力扩展[J].同济大学学报(自然科学版),2013,41(3):324-329.
[5] 王海龙,李庆斌.不同加载速率下饱和混凝土的劈拉试验研究及强度变化机理[J].工程力学,2007,24(2):105-109.
[6] ZHENG Dan,LI Qing-bin.An Explanation for Rate Effect of Concrete Strength Based on Fracture Toughness Including Free Water Viscosity[J]. Engineering Fracture Mechanics, 2004, 71(16/17): 2319-2327.
[7] ROSSI P, MIER J G M V, BOULAY C, et al. The Dynamic Behaviour of Concrete: Influence of Free Water[J]. Material and Structure, 1992, 25(9): 509-514.
[8] ROSSI P.A Physical Phenomenon Which Can Explain the Mechanical Behavior of Concrete under High Strain Rates[J]. Materials and Structures, 1991, 24(6): 422-424.
[9] 李庆斌,郑 丹.混凝土动力强度提高的机理探讨[J].工程力学,2005,22(增):188-193.
[10]BRARA A, KLEPACZKO J R. Experimental Characterization of Concrete in Dynamic Tension[J].Mechanics of Materials, 2006, 38 (3):253-267.
[11]闫东明.混凝土动态力学性能试验与理论研究[D].大连:大连理工大学,2006.
[12]闫东明,林 皋.不同湿度条件下混凝土动态拉伸特性研究[C]∥第14届全国结构工程学术会议论文集(第三册),2005:153-156.