TBM(Tunnel Boring Machine全断面隧道掘进机)法和钻爆法是地下工程开挖的2种主要方法,不同施工方法导致围岩的扰动程度、变形破坏、自稳性、加固措施均不相同,要准确把握这些宏观特征,必须从微观上分析岩石的力学特征。以最大埋深2 525 m的锦屏二级水电站引水隧洞为研究对象,对不同开挖条件下的大理岩进行了电镜扫描测试、松弛深度检测,分析不同开挖条件下岩石的破坏方式和松弛范围。试验结果表明:在岩石破坏断面形貌上,TBM开挖条件下的岩石断口多为沿晶面擦花和切晶擦花,破坏机理以剪切为主,而钻爆法以拉断破坏为主;在松弛深度方面,钻爆法开挖下的围岩松弛深度大于TBM开挖下的围岩松弛深度40~100 cm。以上试验成果为相似地质条件下的岩石破坏机理和加固措施提供借鉴。
Abstract
TBM (Tunnel Boring Machine) method and drilling and blasting method are two main methods in the excavation of underground projects. As for the two methods, disturbance range of surrounding rock, deformation and destruction characteristics, self-stability, and treatment measures are different. In order to accurately understand macroscopic mechanical characteristics of surrounding rock, we should analyze it at microscopic level. Diversion tunnel in JinpingⅡhydropower station ,with maximum embedded depth of 2 525 m, is taken as an example. We carry out tests of scanning electron microscope (SEM) and detect the depth of stress relaxation for marble tunnel under different excavation methods. The test results show that, 1) fracture surfaces of rock by scanning electron microscope in TBM method show pattern of wiping along crystal face and pattern of cutting crystal face, with shear failure as the main failure mechanism, whereas tensile failure for drilling and blasting method; 2) in the aspect of relaxation depth, stress-relaxation depths of surrounding rock excavated by drilling and blasting method are larger than those by TBM method, which vary from 40 cm to 100 cm. The research findings provide reference for failure mechanism of rock and reinforcement measures in projects with similar geological conditions.
关键词
TBM /
钻爆法 /
扫描电镜 /
松弛深度 /
破裂机制 /
加固措施
Key words
TBM /
drilling and blasting method /
scanning electron microscope /
depth of stress relaxation /
failure mechanism /
reinforcement measures
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] RIBACCHI R, FAZIO A L. Influence of Rock Mass Parameters on the Performance of A TBM in A Gneissic Formation (Varzo Tunnel)[J]. Rock Mechanics and Rock Engineering, 2005, 38(2): 105-127.
[2] 王 华,吴 光.TBM施工隧道岩石耐磨性与力学强度相关性研究[J].水文地质工程地质,2010,37(5):57-61.
[3] 冷先伦,盛 谦,朱泽其,等.不同TBM驱动力下的围岩开挖扰动区研究[J].岩石力学与工程学报, 2009,28(2):3692-3698.
[4] 程兵瑞,冯夏庭,肖亚勋,等.在TBM开挖的深埋隧洞中岩石声发射测试的损伤演化规律[J].岩石力学与工程学报,2010,29(8):1562-1569.
[5] 陈 浩. TBM掘进效率与围岩相关性研究[D].成都:西南交通大学,2010.
[6] OGGERI C, INNAURATO N, ORESTE P P, et al. Experimental and Numerical Studies on Rock Breaking with TBM Tools under High Stress Confinement[J]. Rock Mechanics and Rock Engineering, 2007, 40(5): 429-451.
[7] BILGIN N, DEMIRCIN M A, COPUR H, et al. Dominant Rock Properties Affecting the Performance of Conical Picks and the Comparison of Some Experimental and Theoretical Results[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(1): 139-156.
[8] FUKUI K, OKUBO S. Rock-properties Estimation by TBM Cutting Force[C]∥VOUILLE G, BEREST P. Proceedings of 9th International Congress on Rock Mechanics, Paris, France, August 25-28 , 1999:22-26.
[9]YAGIZ S.TBM Performance Prediction Based on Rock Properties[C]∥International Society for Rock Mechanics.Proceedings of the International Symposium of the International Society for Rock Mechanics, Liege, Belgium, May 9-12, 2006: 663-670.
[10]吴世勇,龚秋明,王 鸽,等.锦屏一级水电站深部大理岩板裂化破坏试验研究及其对TBM开挖的影响[J].岩石力学与工程学报,2010,29(6):1089-1095.
[11]苏华友,张继春.供水TBM隧洞监测与信息化施工[J].中国矿业,2003,12(7):30-33.
[12]杨 龙, 杜守继. 地铁隧道TBM施工围岩振动效应的数值分析[J]. raybet体育在线
院报,2014,31(7):60-64.
[13]李青松,石豫川,周春宏. 多元回归法在某水电站TBM施工隧洞围岩质量预测中的应用[J]. raybet体育在线
院报,2012,29(2):41-45.
基金
国家自然科学基金项目(51308082);四川省教育厅基金项目(15ZA0075)