为研究混凝土在股役期间的材料特性,进行了不同应变速率下(10-5,10-4,10-3和10-2/s)的混凝土单轴受压试验,分析了混凝土材料基本力学特性,试验结果表明:随着应变速率的提高,峰值应力和初始弹性模量呈现增大的趋势,峰值应力的变化规律并不明显。基于Weibull和Lognormal统计分布理论,以及Lemaitre应变等效原理,引入应变速率因素,构建出混凝土材料分段式率型单轴受压损伤本构模型。依据试验数据,确定了所建立的率型损伤本构模型参数;给出了不同速率下混凝土单轴受压应力-应变和损伤变化规律曲线。结果表明:建立的混凝土率型本构模型能够反映不同应变速率下混凝土单轴受压损伤全过程。
Abstract
Through uniaxial compression tests under different strain rates(10-5,10-4,10-3 and 10-2/s), the mechanical properties of concrete are analyzed to obtain the material properties of concrete during operation. Results show that as strain rates increase, the peak stress and initial elastic modulus tend to increase, but the regularity of peak strain’s variation is not obvious. With strain rate sensitivity into consideration, a rate-dependent segmented constitutive model of concrete is established based on Lemaitre’s strain equivalent principle and the statistical distribution theories of Weibull and Lognormal. On the basis of test data, the model parameter is determined under different strain rates, and the curve of uniaxial compression stress-strain and the curve of damage variation are obtained. The results indicate that the rate-dependent constitutive model could reflect the whole process of the concrete’s damage of uniaxial compression under different strain rates.
关键词
Weibull统计分布理论 /
率型损伤本构模型 /
应力-应变全曲线 /
损伤变化规律
Key words
statistical distribution theory of Weibull /
rate-dependent constitutive model /
stress-strain full curve /
the law of damage variation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CERVERA M,OLIVER J,MANZOLI O.A Rate-dependent Isotropic Damage Model for the Seismic Analysis of Concrete Dams[J]. Earthquake Engineering and Structural Dynamics,1996,25(9):987-1010.
[2] LEE J,FENVES G L.A Plastic-damage Concrete Model for Earthquake Analysis of Dams[J]. Earthquake Engineering and Structural Dynamics,1998,27(9):937-956.
[3] 彭 刚,刘德富,戴会超.钢纤维混凝土动态压缩性能及全曲线模型研究[J].振动工程学报,2009,22(1):99-104.
[4] 宋玉普, 赵国藩, 彭 放,等. 多轴应力下多种混凝土材料的通用破坏准则[J]. 土木工程学报,1996,29(1):25-32.
[5] 曾莎洁,李 杰.混凝土单轴受压动力全曲线试验研究[J].同济大学学报(自然科学版),2013,41(1):7-10.
[6] 徐传枝,王旭光,马 卉.应变率下混凝土单轴受压本构关系试验研究[J].山西建筑,2012,38(5):44-45.
[7] 王丽娜.考虑应变速率影响的混凝土单轴受压本构关系试验研究[D].唐山:河北理工大学,2010.
[8] 李义强,王新敏,陈士通.混凝土单轴受压应力-应变曲线比较[J].公路交通科技,2005,22(10):75-78.
[9] 丁发兴,余志武,欧进萍.混凝土单轴受力损伤本构模型[J].长安大学学报(自然科学版),2008,28(4):70-73.
[10]王 哲,林 皋,逯静洲.混凝土的单轴率型本构模型[J].大连理工大学学报,2000,40(5):597-601.
[11]李 安.考虑约束作用及率相关的混凝土单轴塑性损伤本构模型[D].哈尔滨:哈尔滨工业大学,2013.
[12]安占义.混凝土单轴受压统一随机损伤本构关系研究[D].西安:西安建筑科技大学,2011.
[13]王乾峰.钢纤维混凝土动态损伤特性研究[D].宜昌:三峡大学,2009.
[14]王春来, 徐必根, 李庶林,等. 单轴受压状态下钢纤维混凝土损伤本构模型研究[J].岩土力学,2006,27(1): 151-154.
[15]LEMAITRE J. Local Approach of Fracture[J].Engineering Fracture Mechanics, 1986,25(5/6):523-537.
基金
国家自然科学基金项目(51279092);三峡大学研究生科研创新基金项目(2014CX022);2014年湖北省协同创新中心研究生自主探索基金项目