针对南水北调中线一期工程建成调水这一新常态下丹江口水库调度问题,从丹江口水库蓄水、供水、发电等不同运行任务出发,通过设定弃水最小化、发电量最大化调度目标函数和不同供水调度情景,建立了丹江口水库优化调度模型,构建满足丹江口水库调度运行方式的求解空间,采用1956—2015年丹江口天然入库径流系列,运用较成熟的动态规划优化算法对丹江口优化调度进行模拟,研究水源地枢纽丹江口水库不同调度目标函数和运行方式对下游区域水文情势和供需水平衡的影响,试图为提出可权衡汉江流域多方用水需求的丹江口调度运行方式提供基础支撑。结果表明:考虑南水北调中线一期工程引水后,采用丹江口优化调度方案的下泄水量>272亿m3,能够满足下游基础供水需求。
Abstract
As the first-stage project of the south-to-north water transfer project has been built, the scheduling of Danjiangkou reservoir has become an important issue. The aim of this research is to provide basic support for the scheduling which could make a trade-off among multiple users in the Hanjiang river basin. In the light of storage, water supply, and power generation tasks, a scheduling model for Danjiangkou Reservoir was built through setting objective functions (minimum abandoned water flow and maximum power generation) and water supply dispatching scenarios (in the presence and in the absence of the south-to-north water transfer project). The solution space which meets the dispatching operation mode of Danjiangkou reservoir was constructed. Dynamic programming algorithm and natural incoming runoff series of Danjiangkou between 1956 and 2015 were used for the simulation. The influences of objective function and operation mode on the water regime and water balance in the downstream were analyzed. Results show that in the presence of the first stage of middle route south-to-north water transfer project, the discharge of Danjiangkou reservoir’s optimization scheduling is more than 27.2 billion m3, which could meet the water demands in the lower reach of Hanjiang River.
关键词
南水北调中线工程 /
丹江口水库 /
调度方案 /
供水调度 /
目标函数
Key words
middle route of south-to-north water transfer project /
Danjiangkou reservoir /
operation scheme /
water supply regulation /
objective function
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WEI C C, HSU N S. Multi-reservoir Real-time Operations for Flood Control Using Balanced Water Level Index Method[J]. Journal of Environmental Management, 2008, 88(4): 1624-1639.
[2] 李安强,张建云,仲志余,等. 长江流域上游控制性水库群联合防洪调度研究[J]. 水利学报,2013,44(1):59-66.
[3] CHEN L, MCPHEE J, YEH W W G. A Diversified Multiobjective GA for Optimizing Reservoir Rule Curves[J]. Advances in Water Resources, 2007, 30(5): 1082-1093.
[4] 张 睿, 张利升, 王学敏,等. 汉江流域梯级水电站联合调峰运行方式研究[J]. 水力发电, 2016,42(6): 66-69.
[5] TILMANT A, KELMAN R. A Stochastic Approach to Analyze Trade-offs and Risks Associated with Large-scale Water Resources Systems[J]. Water Resources Research.doi:10.1029/2006WR005094.
[6] 国海涛, 刘性泉, 岳 峻,等. 水电站水库优化调度混沌粒子群算法[J]. 南水北调与水利科技, 2014, 12(6):181-183.
[7] 李 想, 魏加华, 司 源,等. 权衡供水与发电目标的水库调度建模及优化[J]. 南水北调与水利科技, 2015,(5): 973-979.
[8]CARDWELL H, JAGER H, SALE M. Designing Instream Flows to Satisfy Fish and Human Water Needs[J]. Journal of Water Resources Planning and Management, 1996, 122(5): 356-363.
[9] WU X W, WEI X D, GUO W. Multi-objective Ecological Operation Model of Cascade Hydropower Reservoirs[J]. Procedia Engineering, 2012, 29: 3996-4001. doi:10.1016/j.proeng.2012.01.608.
[10]金 鑫, 郝彩莲, 王 刚,等. 供水水库多目标生态调度研究[J]. 南水北调与水利科技, 2015, 13(3):463-467.
[11]王本德, 张艳平, 李 敏, 等. 丹江口水库流域降雨预报漏报风险分析[J]. 水电能源科学, 2010, 28(1):6-8.
[12]刘 勇,王银堂,陈元芳, 等.丹江口水库秋汛期长期径流预报[J]. 水科学进展, 2010, 21(6): 771-778.
[13]胡 军, 刘 松, 胡永光, 等. 丹江口水库优化调度与效益分析[J]. 人民长江, 2012, 43(20) :12-15.
[14]杨 光, 郭生练, 李立平, 等. 考虑未来径流变化的丹江口水库多目标调度规则研究[J]. 水力发电学报, 2015, 34(12):54-63.
[15]何小刚, 赵铜铁钢, 杨大文. 分布式水文模型与气象遥相关分析相结合的丹江口水库月入库径流预测[J]. 水力发电学报, 2013, 32(3):4-9.
[16]郭生练, 汪 芸, 周研来, 等. 丹江口水库洪水资源调控技术研究[J]. 水资源研究, 2015, 4(1):1-8.
[17]胡甲均, 张玉华. 丹江口库区及其上游水土流失现状及防治对策[J]. 中国水利, 2003 ,(13): 47-49.
[18]中华人民共和国水利部.南水北调中线一期工程水量调度方案(试行)[R]. 北京:中华人民共和国水利部,2014:337.
[19]CAI Y, JUDD K L, THAIN G, et al. Solving Dynamic Programming Problems on a Computational Grid[J]. Computational Economics, 2015, 45(2):261-284.
[20]RITZINGER U, PUCHINGER J, HARTL R F. Dynamic Programming Based Metaheuristics for the Dial-a-ride Problem[J]. Annals of Operations Research, 2016, 236(2): 341-358.
[21]长江水利委员会. 汉江干流综合规划报告[R]. 武汉:长江水利委员会,2011.
基金
国家自然科学基金青年基金项目(51609007)