为研究洞庭湖入江水道断面的调整规律,选择城陵矶(七里山)水文断面,根据1962—2010年的实测水沙数据,运用小波分析方法对流量、含沙量序列进行多时间尺度分析,探明了洞庭湖入江水道水沙条件的周期变化规律;并选取城陵矶(七里山)枯水河槽断面面积为特征变量,结合流量小波系数对水沙条件序列进行时段划分;基于滞后响应原理,建立了适用于城陵矶河段断面面积对水沙条件的分时段变化调整模型。结果表明,建立的模型可以较好地模拟洞庭湖入江水道断面的调整规律,计算值与实测值拟合系数R2为0.77。
Abstract
In order to study the adjustment of discharge and sediment concentration of inlet section from Dongting Lake to Yangtze River, we take Chenglingji hydrological section as an example. According to measured data from 1962 to 2010, we carry out multi-time scale analysis of flow discharge and sediment concentration of Chenglingji station in association with wavelet analysis method to obtain the periodic changes of water-sediment load at the section. Then, we select the section area of low water level as characteristic variables, and use wavelet coefficient of discharge to divide discharge and sediment concentration sequences into different periods. On the basis of delayed response principle, we establish an adjustment model with different time intervals, which is suitable for the response of the water and sediment concentration in the area of the Chenglingji station of Qilishan. Results show that the model could well simulate the regularities of inlet section’s adjustment of Dongting Lake, and the fitted coefficient R2 between calculated and measured data is 0.77, which demonstrates that the model has adequate accuracy.
关键词
河床演变 /
小波分析 /
多时间尺度 /
滞后响应 /
断面面积
Key words
riverbed evolution /
wavelet analysis /
multi-time scale /
delayed response /
section area
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 谢鉴衡.河床演变及整治[M].北京:水利水电出版社,1990.
[2] 钱 宁,张 仁,周志德.河床演变学[M].北京:科学出版社, 1989.
[3] 钱意颖,吴 知,米粹侠,等.关于在多沙河流上修建水库保持有效库容的初步分析[C]∥黄河水利委员会.水库泥沙报告汇编.郑州:黄河水利委员会,1972.
[4] 林秀芝, 田 勇, 伊晓燕, 等. 渭河下游平滩流量变化对来水来沙的响应[J].泥沙研究,2005, (5): 1-4.
[5] SURIAN N,RINALDI M.Morphological Response to River Engineering and Management in Alluvial Channels in Italy[J].Geomorphology,2003, 50(4):307-326.
[6] 吴保生.冲河流冲积河流平滩流量的滞后响应模型[J].水利学报, 2008, 39(6):680-687.
[7] 吴保生.冲积河流河床演变的滞后响应模型——I模型建立[J].泥沙研究, 2008,(6):1-7.
[8] 李凌云. 黄河平滩流量的计算方法及应用研究[D].北京:清华大学, 2010.
[9] 廖治棋. 荆江河段平滩面积对水沙条件变化的滞后响应研究[D]. 武汉:raybet体育在线
, 2014.
[10]王文圣,丁 晶,向红莲.小波分析在水文学中的应用研究及展望[J].水科学进展, 2002,13(4):515-520.
[11]卢金友,罗恒凯.长江与洞庭湖关系变化研究[J].人民长江, 1999, 30(4):24-27.
[12]郭文献,夏自强,王鸿翔,等.近50年来长江宜昌站水温变化的多尺度分析[J].水利学报, 2008,39(11):1197-1203.
[13]王文圣,丁 晶,李跃清.水文序列小波分析[M].北京:化学工业出版社, 2005.
[14]李凌云,卢金友,范北林,等.冲积性河流河床横断面形态研究与进展 [J].raybet体育在线
院报, 2014, 31(5):1-6.
[15]章运超,李凌云,范北林,等.长江沙市段断面面积对水沙变异的滞后响应研究 [J].raybet体育在线
院报, 2016, 33(7):1-5.
[16]金升高,陈建湘,彭育元.城陵矶水文站水文断面的代表性分析[J].水利水电快报,1999, 20(18):20-23.
[17]张艳艳,钟德钰,吴保生.黄河平滩流量的多时间尺度现象[J].水科学进展,2012, 23(3):302-309.
[18]梁志勇,杨丽丰,冯 普.黄河下游平滩河槽形态与水沙搭配之关系[J]. 水力发电学报, 2005, 24(6):68-71.
基金
国家自然科学基金项目(51339001,51209015);湖北省自然科学基金项目(2014CFB329)